Supplementary Material

Molecular triangulation (MT) algorithm

The modified MT method was applied to identify candidate genes associated
with phenotype. The permutation-based p-values were combined across phenotypes for each
gene and were used to rank genes in the network that included both seed and non-seed genes.
The MT method adopts two different scores (#rn and cnt) and two different background

models (ini and rwr).

The first score was calculated as follows: S™"(I,e;G =(N,E)) = Ee(v) ld , (1)
+

vel uv

Where: G = </V A > =undirected molecular network

N=set of genes and FE is a set of their interactions

1= set of seed genes

e(v)= primary evidence i.e. -log of p-value (<5x10°) for all v e/, these values provide
confidence in the decision to include given gene as a seed node

duw = length of the shortest path between genes u and v within network G

The second score was measured by: S (Ti,1,e;G =(N,E)) )
Where,

7" ={7,,....7,,},7, C NV = predefined set of sets of the network genes

Second score is the number of edges in £ that connect a node from 7; with a node from /. The
method generates random initials sets I; in ini background model or random networks E; in the
case of the rwr model. Later, method computes the score of the given initial set (real score)

and its network and the background score for each of the background replicates for every test

set T; We performed 1000 iterations by shuffling the edges to test for the significance of real



score. The smoothed p-value was calculated as explained by lossifov et al (1). Shortest path
length between the genes encoding proteins was calculated using the transcriptional,
proteomic and metabolic interaction networks.

The first background model (ini) assumes that the set of initial nodes / is sampled uniformly
from the network nodes in N . The second background model (rwr) assumes instead that the
network edges E are attached to nodes using a random rewiring process so that every gene
preserves its observed degree (2). Once a score function S and a background model are
chosen, we can generate B replicates according to the background model (B random initial
sets I/ in the case of the ini background model or B random networks £ /in the case of the

rwr model). We compute the score for the given initial set and the given network

s =9 (T,1,e;G = <N JE >) and the background score sl.j for each of the background

replicates(sl.j =S(7;,Ij,e;G =<N,E>) for ini and sl:i =S(T,1,e;G =<N,E">)forrwr) for

every test set 7. We can then assign a p-value for each 7; based on how many of the

background scores are higher or equal to the real score:

s/ s = sy

! B

If all of the background scores are lower than the real score, the above definition will assign a
p-value of 0 (1).

MT uses a null model in which the GWAS signals are uninformative (not linked to the
phenotype) and any observed gene clustering within a molecular network is accidental. The
hypothesis competing with the null assumes that the GWAS signal is associated with a group

of genes within the molecular network.
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Supplementary fig. S1: Degree distributions of the genes unique to MT and JAM for

the four traits.
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Supplementary Fig. S2: The average jActive scores and standard deviations obtained

for HDL-C (A), LDL-C (B), TC (C) and TG (D) from top twenty modules and for

100 random genes. We identified modules for four traits by applying the criteria of

nodes >3 and <50 having jActive score >3.
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Supplementary Fig.S3: Comparison of jActiveModule with Steiner-MCL approach

for seed genes coverage in interactome.
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Supplementary Fig.S4: Depiction of comorbidity associations between diseases in a
module. For each trait interactome (A), the unique ICD9 codes for genes in a module
(B) were converted to construct a phenotypic disease network (C). Seed nodes are
coloured as red in B. The sizes of the disease nodes in C are based on their

connectivity with other diseases in a module.
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Supplementary Fig.S5: GO term enrichment tests of candidate genes priortized by
MT, jActiveModule, GCM, CANDID and MetaRanker.
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Supplementary Fig.S6: Seed and GCM genes for the four lipoprotein traits. GCM
genes are rectangular and the seed genes are indicated as diamonds. The cystathionine
beta-synthase gene (CBS) with a SNP that we found significantly associated in the
MDC-CC cohort is circled in the interacome. All the metabolic interactions (MN) are
indicated as orange lines, protein-protein interactions (PPI) as blue lines and

transcription networks (TN) as yellow lines.




Supplementary table S1: Number of genes filtered in each step

approach for selecting additional candidate genes for lipoprotein traits

applied in our

MT-jActive genes co-GCM Co-GCM genes with
Trait MT genes MT-p-values (jAM) GCM genes genes p<0.05 in GLGC-GWAS
HDL-C 192 5.4E-5 107 45 40 19
LDL-C 142 4.7E-5 42 20 19 9
TC 207 6.5E-5 84 27 25 13
TG 119 4.4E-5 45 25 20 12
Supplementary table S2: Comparison of commonly predicted genes between
CANDID, MetaRanker and the three steps in our approach (MT, jActiveModule,
comorbidity analysis).
p-value p-value p-value p-value
(Fischer's (Fischer's (Fischer's (Fischer's
HDL- MT test) LDL-MT test) TC-MT test) TG-MT test)
CANDID 3.3% 0.022 5.4% <0.0001 7.5% <0.0001 2.7% 0.29
MetaRanker 2.7 % 0.099 3.4% 0.016 7.2% <0.0001 4.5% 0.005
p-value p-value p-value p-value
(Fischer's (Fischer's (Fischer's (Fischer's
HDL- jActive test) LDL-jActive test) TC-Jactive test) TG-jActive test)
CANDID 3.1% 0.22 5.4% 0.1 123 % <0.0001 5.3% 0.1
MetaRanker 4.2 % 0.03 8.1% 0.001 12.3% <0.0001 10.5% <0.0001
p-value p-value p-value p-value
(Fischer's (Fischer's (Fischer's (Fischer's
HDL- GCM test) LDL- GCM test) TC-GCM test) TG- GCM test)
CANDID 7% 0.0048 5.3% 0.55 15.6 % <0.0001 10% 0.0087
MetaRanker 4.7 % 0.158 10.5% 0.006 15.6% <0.0001 15% <0.0001
p-value p-value p-value p-value
HDL- (Fischer's (Fischer's (Fischer's (Fischer's
CANDID test) LDL-CANDID test) TC-CANDID test) TG-CANDID test)
MetRanker 4.5% <0.0001 9% <0.0001 6% <0.0001 3% 0.004
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Supplementary table S3: Literature mining results for GCM genes. Gene order is based on descending p-values in GLGC GWAS data for the

four traits. The table consist the description of candidate genes those found to be related to lipid metabolism.

Gene Trait Description Reference
APP HDL
RXRA variants rs11185660 (P = 0.0021) has be reported to be . )
RXRA HDL associated with susceptibility to low HDL-C and CHD Peloso etal. J Lipid Res.51:3524-32 ( 2010).
Found to be linked to visceral fat accumulation, impaired insulin
FASN HDL sensitivity and increased lipetin and RBF4 suggesting its role in Diabetologia. 50, 1472-80 (2007)
lipogenic pathway
n-3 fatty acids diets diminish arterial LDL-cholesterol deposition in
INSR HDL mice with insulin resistance (Insr heterozygous knockout mice), and | Chang et al. Arterioscler Thromb Vasc Biol. 30:2510-7 (2010).
this is associated with changes in arterial LpL levels and distribution
The CYP3A4 enzymes generate major oxysterols that enter the
circulation. The oxysterols activate-via nuclear receptors-ATP-
CYP3A4 HDL binding cassette (ABC) Al and other genes, leading to the Luoma PV. Eur | Clin Pharmacol. 64:841-50 (2008).
elimination of excess cholesterol and protecting arteries from
atherosclerosis.
VASP phosphorylation flow cytometric assessment has been
VASP HDL reported as a tool to evaluate the responsiveness to clopidogrel in
coronary heart disease (CHD) patients Hezard et al. Platelets. 16;474-481 (2005)
SMURF2 HDL Smurf2 as regulators of TGF-beta signaling: new targets for Cunnington et al. Can. . Physiol. Pharmacol. 87:764-772(2009)
managing myofibroblast function and cardiac fibrosis.
PSMA1 HDL
PCMT1 HDL
DVL3 HDL Dvl3 is required for cardiac outflow tract Etheridge et al. PLoS Genet. 4:e1000259(2008 )
FHL? HDL Deletion of the FHL2 gene attenuates the formation of Chu et al. Life Sci. 86:365-71 (2010).

atherosclerotic lesions after a cholesterol-enriched diet.




CASP8 HDL

ASCC2 HDL

TERT HDL Telo.mera.se reverse transcriptase promotes cardiac muscle cell Oh et al. Proc Natl Acad Sci U S A. 98:10308-13 ( 2001)
proliferation

RNF4 HDL

SKIL HDL

RALYL HDL

PFTK1 HDL

EHMT?2 HDL
Intima-media thickness (IMT) of the carotid arteries, as measured by
B-mode ultrasonography, is a quantitative trait that strongly

SH3GL2 LDL predicts CVD and is increasingly used in clinical decision-making. A Lanktree et al. Stroke. 40:3173-9 (2009)
SNP-rs2593404 near SH3GL2 was found to be associated with IMT.
But, this was not signficant after the correction.
A genome-wide linkage analysis to identify QTLs for plasma HDL-C
levels in a well-characterized U.S. cohort consisting of multiplex

SH3GL3 LDL families (GeneQuest). Fine mapping of the 15925 QTL, we studied Yang et al. ] Lipid Res. 51:1442-51 ( 2010).
D15S983 and two SNPs, rs1491579 (SH3GL3) and rs1638634
adjacent to marker D155S655 with the highest LOD score.

UNC119 LDL

IDH3B LDL

RPA2 LDL

CDK5RAP2 LDL

ITGB3BP LDL

NDUFA4L2 LDL

SH3GL2 TC




Hepatic steatosis in CBS(-/-) mice is caused by or associated with

CBS TC abnormal lipid metabolism Namekata et al. ] Biol Chem. 279:52961-9 (2004).

USP33 TC

DCP2 TC

EX0SC10 TC

PSMA7 TC
Nuclear proteins capable of binding to the MMP3 promoter is

ZNF148 TC transcription factor ZBP89 (also named ZNF148) which acts as a Cardiovasc Res. 69,636-45 (2006)
transcriptional enhancer

SYNJ1 TC

PARK?2 TC

SNRPB TC




Supplementary table S4: Analysis of a combined associated effect of the four SNPs
genotyped in MDC-CC cohort (Summing the number of risk alleles for each

individual).

COMBINEDRISK_FOURSNP
- Low density High density

S_RISK_ALLELE COUNT: Cholesterol lipoprotein  lipoprotein Triglycerides
INSR.NDUFA4/2. CBS. (mmol/1) (mmol/l) (mmol/l) (mmol/1)
DNM2
Mean 6.0889 4.0537 1.417 1.3919
0 N 305 298 304 306
Std'_ . 1.10461 1.00802 0.37605 1.1281
Deviation
Mean 6.1709 4.1605 1.4029 1.3182
1 N 1106 1081 1094 1108
Std'. . 1.16989 1.01722 0.39618 0.73698
Deviation
Mean 6.17 4.1702 1.3668 1.3952
) N 1559 1518 1540 1556
SDt:\;iation 1.07246 0.96281 0.36709 0.77564
Mean 6.1376 4.1486 1.392 1.3274
3 N 1163 1141 1155 1164
Std'. . 1.04363 0.96425 0.37188 0.76794
Deviation
Mean 6.2178 4.2033 1.3839 1.4091
4 N 466 448 456 465
Std'_ . 1.02687 0.94645 0.36046 0.81499
Deviation
Mean 6.2491 4.1964 1.3264 1.4713
5 N 115 111 113 115
Std'. . 1.23936 1.05123 0.34472 0.78866
Deviation
Mean 6.6592 4.65 1.1817 1.815
N 12 12 12 12
6
SDt:\;iation 1.16357 1.03089 0.23417 0.60157
Mean 6.1649 4.1601 1.385 1.3645
N 4726 4609 4674 4726
1.09147 0.98013 0.37483 0.79738
P (linear P (linear P (linear P (linear
Total regression  regression  regression  regression
Std. adjusting for adjusting for adjusting for adjusting for
Deviation age and age and age and age and
sex): sex): sex): sex):
0.101 0.057 0.041 0.026




