Supplementary Data

Materials and Methods

Determination of reactive oxidative stress production

Reactive oxidative stress levels were detected by staining the *FoxO3a*-wild type and -null mouse embryonic fibroblasts (MEFs) with dihydroethidium (DHE) (Molecular Probes) as previously described [1]. Cells were loaded with 5μ M DHE for 15 min at 37°C with 5% CO₂ in phosphate buffered saline (PBS) and then washed with PBS. The cells were returned to MEF media for a 30-min recovery period and then fixed with 4% paraformaldehyde for 7 min at room temperature. The pictures of *FoxO3a*-wild type and -null MEFs were taken under fluorescence microscope.

Reference

1. Tian C, L Sun, B Jia, K Ma, N Curthoys, J Ding and J Zheng. (2012). Mitochondrial glutaminase release contributes to glutamate-mediated neurotoxicity during human immunodeficiency virus-1 infection. J Neuroimmune Pharmacol 7:619–628.

SUPPLEMENTARY FIG. S1. Overexpression of GFP or forkhead class O3a (FoxO3a)-GFP together with Yamanaka factors in *FoxO3a*-wild type and -null mouse embryonic fibroblasts (MEFs). (A) Overview of alkaline phosphatase (AP) staining in the *FoxO3a*-wild type and -null MEFs after the overexpression of GFP or FoxO3a-GFP together with Yamanaka factors for 12 days. (B) The number of AP + colonies was normalized to the *FoxO3a*-wild type MEFs transduced with retroviruses encoding GFP together with Yamanaka factors. GFP, green fluorescent protein; MEFs, mouse embryonic fibroblasts.

SUPPLEMENTARY FIG. S2. Reactive oxidative stress (ROS) detection in the *FoxO3a*-wild type and -null MEFs. The ROS levels in *FoxO3a*-wild type (**A**) and -null (**B**) MEFs were detected by dihydroethidium staining. The expression levels of FoxO3a, 4-HNE, and MnSOD (**C**) and the expression levels of p16, p21, and p53 (**D**) in the *FoxO3a*-wild type and -null MEFs were determined by western blotting analysis with β -actin as the internal control. 4-HNE, hydroxynonenal.

SUPPLEMENTARY FIG. S3. Marker genes expression in *FoxO3a*-wild type and -null induced pluripotent stem (iPS) cells. The expression of fibroblast-specific genes (**A**) and iPS cell-specific genes (**B**) in MEFs, iPS cells, and embryonic stem (ES) cells were analyzed by SYBR-Green based quantitative RT-PCR with GAPDH as the internal control. The total, transgenic, and endogenous levels of Oct3/4 and Sox2 (**C**) were analyzed through SYBR-Green based quantitative RT-PCR with specific primer pairs (Supplementary Table S1). Immunofluorescence staining of Nanog (*green*) in *FoxO3a*-wild type (**D**) and -null (**E**) iPS cells and nuclear staining with DAPI (*blue*). Scale bar = 50 µm. RT-PCR, real-time polymerase chain reaction.

SUPPLEMENTARY FIG. S4. Neurons and astrocytes differentiation of *FoxO3a*-wild type and -null iPS cell-derived neural stem cells (NSCs). **(A)** Immunofluorescence staining of neuron marker-Tuj (*red*) and astrocyte marker-GFAP (*green*) in *FoxO3a*-wild type and -null iPS cell-derived NSCs, and nuclear staining with DAPI (*blue*). **(B)** Quantification of the proportion Tuj + /DAPI and GFAP + /DAPI in *FoxO3a*-wild type and -null NSCs derived from iPS cells. Scale bar = 50 µm (**p* < 0.05).

SUPPLEMENTARY TABLE S1.	PRIMER SEQUENCES	FOR SYBR-GREEN	BASED Q	JUANTITATIVE	
Real-Time Polymerase Chain Reaction					

Genes	Primers-Forward	Primers-Reverse
GAPDH	AAGGGCTCATGACCACAGTC	GGATGACCTTGCCCACAG
Dkk3	CAGCTCTCAACTACCCTCAGG	ACCTCAGAGGACGTTTTAGCA
Twist1	GAGGTCTTGCCAATCAGCCA	CCAGTTTGATCCCAGCGTTT
Twist2	CAGCAAGATCCAGACGCTCAA	GGTTGTCCAGGTGCCGAAAG
Snai1	GTCTGCACGACCTGTGGAAA	AGCCAGACTCTTGGTGCTTG
Col1a1	CTGACGCATGGCCAAGAAGA	ATACCTCGGGTTTCCACGTC
Col3a1	GAGGAATGGGTGGCTATCCG	TTGCGTCCATCAAAGCCTCT
Nanog	TCTTCCTGGTCCCCACAGTTT	GCAAGAATAGTTCTCGGGATGAA
Zfp4Ž	CCCTCGACAGACTGACCCTAA	TCGGGGCTAATCTCACTTTCAT
Úṫf1	TGTCCCGGTGACTACGTCT	CCCAGAAGTAGCTCCGTCTCT
Dppa5a	ATGATGGTGACCCTCGTGAC	ACCTCGATAAGTTCTTCGGGAG
Eras	TGCCTACAAAGTCTAGCATCTTG	CTTTTACCAACACCACTTGCAC
Total Oct3/4	GGCTTCAGACTTCGCCTTC	AACCTGAGGTCCACAGTATGC
Total Sox2	CCTCCGGGACATGATCAGCATG	GCAGTGTGCCGTTAATGGCCGTG
Endo Oct3/4	CCTCTGTTCCCGTCACTGCTCTG	ATGAGTGACAGACAGGCCAG
Endo Sox2	CCTCCGGGACATGATCAGCATG	CGGCATCACGGTTTTTGCGT
pMXs Oct3/4	CCTCTGTTCCCGTCACTGCTCTG	TTTATCGTCGACCACTGTGCTGG
pMXs Sox2	CCTCCGGGACATGATCAGCATG	TTTATCGTCGACCACTGTGCTGG