Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo Alicia R. Timme-Laragy, Jared V. Goldstone, Barry R. Imhoff, John J. Stegeman, Mark E. Hahn, Jason M. Hansen ## Supplemental file 4 ## Glutathione dynamics in developing vertebrate animals: ## Comparison of studies and methods | Species | Measurements | Method | Developmental stages examined | Findings | Refer
ence | |--|---------------------------------|-------------------------|--|---|---------------| | frog
(Xenopus
laevis) | $\mathrm{GSH}_{\mathrm{T}}$ | spectro-
photometric | Daily from 1-7 dpf (Stages 22-48 encompassing hatching, organogenesis. | Increased GSH _T from stage 22 to 44/45 | [68] | | frog
(Rana
ridibunda
and
Bufo viridis) | GSH _T ; GSH;
GSSG | spectro-
photometric | Weeks 1, 3, 5, 8 post fertilization | Increase in GSH and GSHT with later stages (5 th and 8 th week), increase in GSSG at week 3 and 8 | [69] | | crocodile
(Caiman
yacare) | GSH _T ; GSH;
GSSG | spectro-
photometric | Embryo, juvenile, adult, in liver, kidney, lung, brain, heart, muscle | Increase in GSH and GSHT from embryos to juvenile and adjult stages, decrease in GSSG from embryo to juvenile stages. | [70] | | rat
(Rattus
norvegicus) | $\mathrm{GSH}_{\mathrm{T}}$ | spectro-
photometric | Males only, GD20 and post natal days 1,3,5,7,14,21,28,42,63,84,112 | Increase GSH _T at PND 3, 7, 112. | [71] | | mouse
(Mus
musculus) | GSH _T ; GSH;
GSSG | HPLC | Oocyte, fertilized embryo, 2 cell, 4 cell, to GD3 (blastocyst, pre-implantation) | GSSG not detected until blastocyst, decrease in GSH between oocytes and blastocyst | [72] | | cod | GSH _T ; GSH; | spectro- | Oocytes, sperm, in depth sampling of | GSH _T increased through the hatching gland | [74] | | (Gadus | GSSG; E _h | photometric | cleavage, blastula, gastrulation, through | stage, GSSG increased after gastrulation | | |----------------------------|----------------------------------|-------------|---|--|---------------| | morhua) | | | pre-hatch embryos (Hall stages 6.5-23 | | | | zebrafish
(Danio rerio) | GSH_T ; GSH ; $GSSG$; E_h | HPLC | Oocytes, mid-blastula transition,
gastrulation, segmentation, pharyngula,
pre-hatch, hatched eleutherolarvae (0-120
hpf) | GSH decreased while GSSG increased from oocytes through mid-segmentation, then oscillated until hatch. GSH _T concentration increased between 12 hpf and hatching. E _h was oxidized during the first 12 h, and then oscillated around -190 mV through organogenesis, E _h was reduced after hatch (-220 mV) | this
study |