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Supplementary Figures
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Supplementary Figure 1. X-ray structures and omit maps for ligands built into hDHFR
structures. (a) Overlay of ecDHFR (PDB code 1RX2") and hDHFR bound to NADP" and
folate, showing that hDHFR and ecDHFR are highly conserved at the structural level. ecDHFR
is shown in purple with green ligands, and hDHFR is shown in red with yellow ligands. (b-f)
2Fo-Fc omit maps are shown for each ligand, contoured to ¢ = 1.0. (b) Folate from the hE—
NADP—FOL structure. (¢) NADP" from the hRE-ENADP —FOL structure. (d) NADPH from the
hE-NADPH structure. (¢) ddTHF from the hE-NADP —ddTHF structure. (f) NADP" from the
hE-NADP —ddTHF structure, the NADP" is colored by B-factor, after final refinement. (g-h) As
discussed in the text, the density for this NADP" ligand was discontinuous, indicating disorder
and/or low occupancy. (g) Ligand occupancy was refined using PHENIX, and the ligand is



modeled in at an occupancy of ~0.8. 2Fo-Fc map (o = 1; blue) and Fo-F¢ map (o = 3; red,
negative density; green positive density) after refinement with NADP" modeled into the hE—
NADP —ddTHF structure. (h) 2Fo-Fc map (6 = 1; blue) and Fo-Fc map (6 = 3; red, negative
density; green positive density) after refinement with 2 phosphates, 2 glycerols and waters
modeled into the NADP-binding site in the hRE-NADP"—ddTHF structure. Remaining positive
density is observed in the adenine region and the nicotinamide region, showing that the density is
not satisfied upon modeling in buffer molecules. (i) 2Fo-Fc map (o = 1; grey) and Fo-Fc map (o
= 3; red, negative density; green positive density) after refinement with 6S-ddTHF (blue sticks).
(j) 2Fo-Fc map (o = 1; grey) and Fo-Fc map (o = 3; red, negative density; green positive density)
after refinement with 6R-ddTHF (yellow sticks).






Supplementary Figure 2. Hydrogen bonding networks that support the hinge-open
conformation. (a-c) Overlay of hE-NADP'—FOL (cyan) and hE-NADPH (light pink), aligned
on the “Met20” loop (a), residues 71-114 (b) and helix oF (¢). NADP" corresponding to hE—
NADP'-FOL is in blue, and NADPH corresponding to the hE-NADPH structure is in pink.
Ligands and side chains are colored by element: nitrogen blue, oxygen red, phosphorus orange,
carbon as described for each ligand or structure. Hydrogen bonds are shown as blue dashed lines
for EENADP'—FOL and pink dashed lines for E-NADPH. Hydrogen bonds stabilizing the
nicotinamide moiety (a) and the adenosine moiety (b) are present in both conformations. (¢)
Hydrogen bonds from the diphosphate groups of NADPH to Ser119 (pink dashed lines) stabilize
the “hinge-open” conformation. These hydrogen bonds are broken in the “hinge-closed”
conformation, as other hydrogen bonds are formed to folate (Supplementary Table 2). (d-e)
Hydrogen bonds for Hinge 1 in hDHFR (d) and ecDHFR (e). Many hydrogen bonds stabilize
Hinge 1 in human DHFR. Residues in the loop subdomain are colored purple, and residues in the
adenosine-binding subdomain are coloured green. (f). The hinge-open conformation is
stabilized in C. albicans DHFR. An overlay of caDHFR bound to NADPH (purple, PDB code:
1A19%) with hE-NADP'—FOL (green, hinge-closed) and hE-NADPH (cyan, hinge-open) show
that the oF helix in cDHFR is aligned with that in hE-NADPH. The structures are aligned on the
loop subdomain. Ser119, which stabilizes the hinge-open conformation in hDHFR, has been
substituted with Glul16 in caDHFR, which can also stabilize the hinge-open conformation via a
water-mediated hydrogen bond to NADPH.
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Supplementary Figure 3. Supporting NMR data for hDHFR. (a-¢) Numerous residues in hE—
NADP'—FOL show "°N Ry, dispersion at 280 K, but '°N R; dispersion is not observed in
hDHFR. (a) Selected residues showing °N R, dispersion in regions A, B and C as well as a



region that likely “gates” NADP flux are shown in red on the hE-NADP —FOL structure.
Ligands are shown as sticks. (b) Examples of R, dispersion curves. Residue numbers are
indicated in the top right for each curve. (¢) Representative data for hE-ENADP'—FOL "N R,
dispersion experiments at 500 MHz (black) and 800 MHz (red). These data were collected at 303
K. No dispersion was observed for data collected at 280 K, 292K, 298 K, or 309 K. (d-e) "N 'H
chemical shift differences in hDHFR binary and ternary complexes. (d) Overlay of hRE-NADP -
FOL (black) and hE-NADPH (magenta) "N HSQC spectra at pH 8.0 and a temperature of 300
K. (e) Weighted average 'H, '°N chemical shift differences between hE-NADP—FOL and hE—
NADPH (shown in A), mapped onto the hDHFR structure. Chemical shift differences are
colored onto the structure using a gradient of thickness and red to white, with red, thick regions
representing the largest chemical shift differences between the two complexes; ligands are shown
as dark gray sticks. Large changes are observed in helix oF and hinge 2. Chemical shift
differences were calculated as follows:

\/(AIH)z +(A1;Nj2
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Supplementary Figure 4. Supporting NMR data for 2IPWNAL* ecDHFR mutant. (a) The
2'PWNAL* E. coli DHFR mutant is structurally similar to N23PP (or *’PWPPL**) ecDHFR.
Overlay of PWNAL? ecDHFR "N HSQC spectrum (red) with N23PP ecDHFR "N HSQC
spectrum (black), with both enzymes bound to NADP" and FOL, showing that resonances do not
shift significantly. (b-c) "°N R, dispersion is present, but considerably dampened, for a few
active site residues in >’PWNAL** ecDHFR. (b) Residues showing '’N R2 dispersion in
relaxation compensated constant time CPMG experiments are plotted as spheres on the wild type
ecDHFR-NADP -FOL structure (3QL0%). Dispersion profiles for C-terminal associated residues
(blue) are unaffected by the mutation. All other residues exhibiting dispersion are located in the
active site and are shown in red. (¢). °N R, dispersion curves for active site residues in the
mutant, and corresponding curves for the wild type enzyme. The few residues that do show
dispersion in the mutant have significantly reduced R, values.



E.
E.
E.
B.

C.
D.
R.
5.
B.
H.

E.
E.
E.
B.
5.
5.

R
8.

coli (WT)
coli (“BPWRPL™)
coli (“PWNAL')
anthracis

. cholerae

elegans
rerio
norvegicus
scrofa
taurus
sapiens

coli (WT)

coli (V'PWPPL™)
coli (TPWHALM)
anthracis
aureus
pneumoniae

. cholerae

. elegans
. rerio

norvegicus
scrofa

. taurus

sapiens

Region A
PWN=LP=-=AD
PWPPLP--AD
PHNALP--AD
PHR-LP--SE
PHH-LP--ND
PHH-LP--AE
PWH-LP--AD
PHRIKK===D
PWHPIRLSNE
PWPLLR--NE
PHPPLR--NE
PHWPPLR--NE
PHPPLR-<NE

Region B

Conformational flexibility across h-transfer step?

Tas
Reduced
Reduced
Tes

Yes

Yes

Ies

Tes

No

Ho

No

Ho

No

. coli (WT)
. coli (¥PWPPL')

coli (“PWNAL™)
anthracis
aureus

. pneumoniae

cholerae
elegans
rerio
norvegicus
scrofa
taurus

. sapiens

Region C

YEQFLP--KAQKLYLT
YEQFLP-~-KAQKLYLT
YEQFLP--KAQKLYLT
YDLFLP--YVDELYIT
FEEMID--KVDDHYIT

d

'\

/!i;agion B



e

Colors for phyla: A B C

Supplementary Figure 5. Sequence analysis of DHFRs from different species. (a-d)
Sequence alignments of DHFR enzymes for which NMR data were obtained. (e) Tree of
eukaryotic DHFR sequences showing lengths of Regions A, B and C. E. coli DHFR is also
shown for comparison.
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Supplementary Figure 6. >N HSQC spectra for bacterial DHFRs (a-d) and eukaryotic
DHFRs (e-i). Spectra show DHFRs in the E-ENADP '~ FOL (black) or EENADP"—THF (red)
complexes. Spectra are shown for S. aureus (a), S. pneumoniae (b), B. anthracis (¢), V. cholerae
(d), S. scrofa (e), B. taurus (f), R. norvegicus (g), C. elegans (h), and D. rerio (i).



Supplementary Tables

Supplementary Table 1. Ligand-protein hydrogen bonds in hDHFR

hE-NADP'-FOL hE-NADPH
Donor Acceptor Distance Donor Acceptor Distance
A9-N NAP-NO7 29 A9-N NDP-NO7 3.0
K54-N NAP-AO4* 3.0 K54-N NDP-AO4* 3.0
K54-NZ NAP-AOP2 2.8 K54-NZ NDP-AOP2 2.5
K55-N NAP-AO5* 3.1 K55-N NDP-AOS5* 3.2
T56-N NAP-AO2 2.9 T56-N NDP-AO2 3.0
T56-0G1 NAP-AO2 2.7 T56-OG1  NDP-AO2 2.6
S76-0G NAP-AOP2 2.6 S76-0G NDP-AOP2 2.5
R77-N NAP-AOP1 2.7 R77-N NDP-AOP1 2.8
G117-N NAP-AO1 3.2 GI17-N NDP-AO1 3.1
GI17-N NDP-AO2 3.1
S118-N NAP-NO2 3.0 S118-N NDP-NO5* 2.9
S118-0G NAP-NO2 33
S119-OG~ NDP-AO1 2.8
S119-N NDP-NO2 2.8
S119-OG~ NDP-NO2 3.1
NDP-NN7 A9-O 2.8
NAP-ANI1 R91-O 34
NAP-NN7 A9-O 2.8
NAP-NN7 116-O 3.0 NDP-NN7 116-O 3.2
NAP-AN7 S119-0G 3.2
N64-ND2 FOL-O 2.9
R70-NH1 FOL-O1 2.9
R70-NH2 FOL-0O2 2.8
FOL-N3 E30-OEl 2.8
FOL-NA2 E30-OE2 2.8




Supplementary Table 2. Table of hydrogen bonds in both hinge regions for human and E.
coli DHFRs. The extensive network of hydrogen bonds in the long hinge 1 of hDHFR supports
the rigid body hinge-twisting motion that opens the active site.

HINGE 1
Human DHFR, E-NADP+-FOL E. coli DHFR, E-NADP+-FOL

Donor Acceptor Distance Donor Acceptor Distance
T39-N Q35-0 2.9 L36-N K32-O 29
T39-0G Q35-0 2.7 D37-N G56-0O 2.8
T40-N R36-O 3.1 K38-N T35-O0 3.2
T40-0G1 R36-0O 2.7 K38-NZ E90-OE1 2.8
S41-0G V43-0O 2.8 K38-NZ N34-O 2.9
S41-0G K46-O 3.2

S41-0G DI110-OD2 3.5

S42-N DI110-OD2 2.8

S42-0G D110-OD2 2.7

V43-N S41-0G 3.0

K46-N V43-0 3.2

Q47-N K108-O 3.0

N48-ND2 T38-0 2.9

N48-ND2 T40-O 3.0

L49-N MI111-O 2.9

R70-NH1 T38-0Gl1 2.9

I71-N N48-0 2.9

DI10-N Q47-0 2.8

MII1-N N48-OD1 2.9

W113-N L49-0 2.8

HINGE 2
Human DHFR, E-NADP+-FOL E. coli DHFR, E-NADP+-FOL

HI127-N A124-0O 3.0 K106-N F103-O 3.0
H127-ND1 P128-O 2.8

GI129-N D186-O0* 2.8 A107-N L104-O 3.1
L131-N K184-O 3.1 R158-NE A107-O 2.8
K184-NZ H127-O0 2.7

K184-NZ G129-0 2.7 R158-NE A107-O 3.2
K184-N L131-O 3.0

*C-terminal residue



Supplementary Table 3. Complete list of fully sequenced genomes analyzed. An excel
spreadsheet is also provided.
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Supplementary Table 4. Sequence conservation of Hinge 1. The first two residues shown are
the bending residues in this hinge.

hDHFR T T S S \' E G K Q N L
%Adentity 31.4(38.8|18.2|43.0(21.5| 24.8(45.5|85.1| 32.2( 100.0| 14.9
%&onservation | 57.0( 42.1| 69.4| 51.2| 22.3| 28.1| 45.5| 85.1| 32.2( 100.0| 31.4




Supplementary note
Expanded discussions

The human DHFR active site

For E. coli DHFR, a large chemical shift change in the N dimension is observed for
Ala6 between THF complexes and FOL complexes. This difference is the result of a hydrogen
bond to Ile5, which is formed when THF is bound, but not when FOL is bound'. Based on the
crystal structures, a similar hydrogen bond would be expected for hDHFR involving Ile7.
However, there is no evidence for its formation from our NMR data. From the near identity of
the E-ENADP'—FOL and E-NADP'—THF spectra, we conclude that hDHFR does not
discriminate as effectively as ecDHFR with respect to FOL and THF. Consistent with this notion,
the dissociation constants for FOL, DHF and THF are very similar for hDHFR, while ecDHFR
binds two orders of magnitude more tightly to THF than it does to FOL*’. The "N HSCQ
spectrum of hE-NADPH-THF shows significant broadening and some shifting of resonances
compared with that of the hE-NADP —THF complex. However, we were unable to prepare a
stable sample for this complex, and the ’N HSQC spectrum began changing within a few hours.
Therefore, reliable assignments could not be made, and we could not study this complex in
detail. A chemical shift analysis of hE-THF and hE-NADP —THF shows that, in the product
binary complex, the differences in chemical shifts can be attributed to the presence or absence of
NADP, without additional changes in backbone conformation. Thus, X-ray structures and '°N
HSQCs show that the backbone conformation of hE-NADP'—FOL, hE-NADP —THF and hE—
THEF are all very similar and in the “closed” conformation. The “closed” conformation in
ecDHFR is stabilized by hydrogen bonds between the backbone amide and sidechain carboxylate

of Asp122 and the backbone carbonyl and amide of Gly15 and Glul7, respectively. In the



“occluded” conformation, these hydrogen bonds are broken, and new ones are formed between
backbone carbonyl and amide of Asn23 and the backbone amide and side-chain hydroxyl of
Ser148, respectively'. In hDHFR, this hydrogen-bonding pattern is conserved for the observed
“closed” conformation, but the hydrogen bonds stabilizing the “occluded” conformation cannot
be formed as Asn23 of ecDHFR is replaced by two prolines in hDHFR. As mentioned in the
main text, the active site of hDHFR appears to be better packed than that of ecDHFR. The key
side chains that contribute to the efficient active site packing in the human enzyme are Leu22,
Pro26, Phe31, 1le60 and Pro61. In ecDHFR, Leu22 is replaced by the more flexible Met20,
Phe31 is substituted by a smaller Leu28, and Pro61 by the highly flexible Gly51, resulting in a

more loosely packed active site.

Chemical shift analysis of hE—-NADPH and hE—-NADP'—-FOL

To assess the presence of the hinge motion in solution, we turned to NMR experiments. A
comparison of the "N HSQC spectra of hE-NADPH and hE-NADP—FOL shows chemical shift
differences that are consistent with the hinge movement observed in the crystal structures. As
hE-NADPH is not stable at pH 6.5, the pH at which the chemical shift analysis was carried out
for other complexes, spectra of both hE-NADPH and hE-NADP —FOL were collected at pH 8.0
to facilitate an analysis that is not influenced by pH-dependent chemical shift changes in either
complex (Supplementary Fig. 3d,e). Several chemical shift changes are observed, of which only
a subset reflect ligand (FOL) binding, as expected. Gly129, one of the hinge-bending residues
shows a very large chemical shift difference in both 'H and "N positions. Other residues in the
region, Leul31 and Lys132 also show significant '’N and 'H chemical shift differences. These

data are consistent with a conformational change in the region, and we conclude that the



difference in chemical shifts most likely reflects the hinge movement, with the hinge being
closed in the hE-NADP'—FOL complex, and open or averaging between open and closed in the
hE-NADPH complex. In the region of hinge 1, the backbone amide cross peak of Gly45 is
broadened beyond detection, and resonances of residues 42 and 44 are weak, indicative of
flexibility in that region. We also observe a chemical shift difference for Asn107. Asn107 N
forms a hydrogen bond with Pro103 CO, stabilizing a short 1.5 turn helix. In the ternary hE—
NADP'-FOL complex, Pro103 is slightly shifted out of register, and the distance between
Asn107 N and Pro103 CO increases from 3.1 A in hE-NADPH to 4.5 A. The hydrogen bond
between Asn107 N and Pro103 CO is, therefore, broken, and the secondary structure in this

region is loosened in the ternary (hinge-closed) complex.

Hinge movements in hDHFR

A comparison of the hydrogen bonding patterns in the hE-ENADP —FOL and hE-NADPH
structures sheds considerable light on how these movements are driven by ligand binding and
release in human DHFR. The NADP cofactor in both hE-NADPH and E-NADP"-FOL is firmly
anchored to the loop subdomain in the region of the nicotinamide ring, and to the adenosine
binding subdomain in the region of the adenosine moiety. Thus, the hydrogen-bonding network
to the protein is maintained at both ends of NADP. However, in the pyrophosphate region of
NADP, the interactions with the oF helix differ between the binary hE-NADPH and ternary hE—
NADP -FOL structures. The phosphate groups form hydrogen bonds to the hydroxyl group and
backbone amide of Ser119 in hE-NADPH, and an additional hydrogen bond to the backbone
amide of Gly117 (Supplementary Fig. 2a-c). Upon folate binding, several new hydrogen bonds

are formed from FOL to both subdomains of the protein (Supplementary Table 1), pulling both



subdomains towards each other. In the hinge-closed state, the hydrogen bonds between NADPH
and Ser119 are broken, allowing helix oF to slide 2.5 A away from the active site as the rest of
the adenosine binding subdomain closes in towards the loop subdomain. The sliding of helix aF
introduces a twisting motion into the hinge movement, and allows sufficient space for the
nicotinamide ring of NADP" to be rearranged slightly to avoid steric clash with the pterin ring of
folate. In the absence of substrate, the NADP to Ser119 hydrogen bonds stabilize the hinge-open
conformation, explaining why this conformation is not observed when a ligand is bound in the
substrate-binding site. The hinge motions are, therefore, driven by ligand binding, and the two
conformations are stabilized by hydrogen bonding interactions and hydrophobic packing
interactions between the ligands and the enzyme.

Thr40, a classical helix C-cap and one of the bending residues in hinge 1, forms a
hydrogen bond to the backbone CO of Arg36 in the substrate-binding helix, and also to the
Asn48 side chain at the end of the hinge. Additionally, Asn48 forms a hydrogen bond to the
backbone amide of Met111 in the adenosine-binding subdomain, and to Thr38, the last residue in
the substrate binding helix preceding hinge 1. The bending of Thr39 and Thr40 results in a rigid
body movement of a subset of residues in hinge 1 and the adenosine binding subdomain (Thr41-
[114) moves as a rigid body; the length of this hinge provides the framework for the rigid body
movement. The hinge 1 region in ecDHFR is 7 residues shorter than that of hDHFR, and forms a
network of hydrogen bonds to both subdomains, restricting the extent of possible movements in
this region; accordingly, hinge-bending is of much smaller magnitude in ecDHFR' than in the
human enzyme (Supplementary Fig. 2a-c).

A comparison of the hE-NADPH complex with mouse DHFR (mDHFR, mE) in complex

with NADPH shows that the hinge-open conformation is only observed in the hE-NADPH



structure, not in the mE-NADPH structure, although the sequences are highly conserved. The
two structures are in different space groups, and both have lattice contacts in areas that could
influence the stabilization of the hinge-open versus hinge-closed conformation in the crystal
structures. Most importantly, the mE-NADPH structure (PDB code: 3D84%) has a glycerol
molecule bound in the substrate-binding site, forming key hydrogen bonds to the substrate
binding helix, adenosine binding domain and core B-sheet, which would be expected to stabilize

the hinge-closed conformation in a similar manner as FOL.

Further discussion of PWNAL ecDHFR mutant

The "N HSQC spectrum of the *’PWNAL** E-NADP—FOL is very similar to that of the
wild type enzyme, and even more so to the N23PP/S148 A mutant, indicating that it is
structurally similar (Supplementary Fig. 4a). Due to the very small amount of dispersion, which
is detectable in '°N R2 dispersion experiments only at the higher field, the data cannot be fit to
obtain an accurate rate, but indicate the presence of limited flexibility in these residues on the ps-
ms timescale, at a much faster rate (estimated to be ~3000 s™) than for the wild type enzyme.
Motions are altered in key loop residues, such as Gly121 and His149, which show large
fluctuations in wild type E-ENADP"—FOL, but no observable ’N R, dispersion in the mutant
(Supplementary Fig. 4b,c). C-terminal-associated residues maintain millisecond timescale
dynamics similar to wild type and >’ PWPPL** ecDHFR, with a rate (kex) of 600 (+ 16) s™', and an

excited state population of 3.2%.



Relationship between Regions A, B & C in DHFR

The length of Region 1 relates to conformational flexibility of the active site “Met20”
loop, and the length and composition of Regions 2 and 3 are likely determinants of whether
hinge movements can occur in the enzyme. Based on our sequence analysis, we find that the
combination of lengths in these three regions show certain preferences. The vast majority of
bacterial sequences contain 7 residues in Region A, 12 residues in region B, and 14 residues in
Region C, and thus have flexible Met20 loops and short hinges that appear unable to support the
large scale opening of the active site observed in hDHFR. All Region B sequences containing 19
residues exactly can be aligned accurately to the hDHFR sequence and structure, on the
assumption that the flanking secondary structures (aB and 3B) are conserved in length. Longer
hinges are present in most eukaryotes, but lower eukaryotes retain flexible Met20 loops (short
Region A), while higher eukaryotes contain an insertion in Region A, limiting the conformational
change after hydride transfer. It seems likely that, while almost all prokaryotic DHFRs cannot
accommodate the hinge movements, most eukaryotic DHFRs have already developed the length
of hinge that would be required for the hinge movements, but only a few eukaryotic DHFRs have
eliminated conformational flexibility influenced by Region A. In a minor group of bacterial
sequences, the length of Region C (and therefore likely hinge 2) is similar to hDHFR, but the
length of Region B (and likely hinge 1) is identical to the majority of bacterial sequences.

A comprehensive analysis of all DHFR structures in the PDB was carried out, paying
special attention to loop and hinge conformations in Regions A, B and C. Although several
structures of DHFR are available, analysis of these is not as insightful as one would expect for
two main reasons: A) Most structures are of either the E. coli or human enzyme bound to an

inhibitor and NADP" in a ternary complex. In the ternary complex, the active site loops are



preferentially closed, and do not give much insight into the conformations relevant to catalysis.
B) An analysis of all structures shows most to be exactly the same as the "closed" conformation
of ecDHFR. Very few structures differ significantly from this conformation. For the structures
that shed insights on understanding the dynamic mechanism, we have included our observations
below or in the main text.

It is interesting to note that, in a small subset of bacterial sequences, the length of Region
B is increased by one residue compared with the consensus length for bacterial DHFRs. This
subset represents thermophilic bacteria including Thermatoga maritima DHFR (tmDHFR), as
well as a few enterobacteria. Since structures are available for tmDHFR, we can assess the
differences between tmDHFR and ecDHFR further. tmDHFR is a dimer, in which the active site
loop (“Met20 loop” assessed in region 1) forms part of the dimer interface, and is stabilized in an
“open” conformation, which is different from the “closed” and “occluded” conformations of
ecDHFR. The “open” conformation has been observed in some crystal structures of ecDHFR,
wherein it is stabilized by lattice contacts, but is not a stable ground state in any intermediate
complex for ecDHFR. While this conformation is conducive to NADP binding, it is not optimal
for catalysis, as the “open” loop does not shield the active site from bulk solvent'. The additional
residue in Region B of tmDHFR forms an extra turn in the substrate binding helix, and does not
add to the length of the connecting loop. However, we note that the dynamic mechanism in
tmDHFR is likely to be quite different from that of ecDHFR due to the dimerization interface of
the enzyme at the active site, and the fact that the enzyme functions at much higher temperatures.

Gallus gallus (chicken) DHFR (cDHFR) is the vertebrate DHFR that is most divergent
from hDHFR and for which a structure is available (PDB codes: 1DR1, ternary complex with

thioNADP" and biopterin and 8DFR, binary complex with thioNADP")*!'°. A comparison of both



cDHFR structures with hE-ENADP"—FOL shows that the oF helix superimposes exactly with
hDHFR in the hinge-closed conformation. When the structures are aligned on the loop
subdomain, only Gly53 and K68 in the cDHFR adenosine binding domain are in a slightly more
“open” conformation than hE-NADP"—FOL. In the presence of substrate or product, this region
would be expected to form hydrogen bonds to the ligand, and close the active site. It is likely that
helix oF cannot stabilize the hinge-open conformation, as Ser119 of hDHFR is substituted with
Alall9 in cDHFR, and the hydrogen bonds between this residue at the N-terminus of helix oF
forms stabilizing hydrogen bonds with NADPH in the binary hE-NADPH hinge-open
conformation. There is no notable difference in the conformation of the binary cE-thioNADP"
and ternary cE-thioNADP ":biopterin, showing that the hinge-open conformation is not present,
and providing further evidence that the interaction of the Ser119 residue in oF with NADP is

important in maintaining the hinge-open conformation in hDHFR.
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