SUPPORTING INFORMATION

Synthesis and evaluation of hetero- and homo-dimers of ribosome-targeting antibiotics: Antimicrobial activity, *in vitro* inhibition of translation, and drug resistance

Yifat Berkov-Zrihen,[†] Keith D. Green,^{‡,§} Kristin J. Labby,[‡] Mark Feldman,[†] Sylvie Garneau-Tsodikova,^{*,‡,§} and Micha Fridman^{*,†}

[†]School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel

[‡]Department of Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States

[§]Current address: Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, 40536, United States

Correspondence to: sylviegtsodikova@uky.edu or mfridman@post.tau.ac.il

Supporting Information Content:

Table S1: Relative activity (%) for TOB and CAM derivatives compared to the parent drugs TOB (1) and CAM (3) against various drug-modifying enzymes. (p. S2)

Table S2: Purity of new dimers as determined by RP-HPLC (p. S18)

Figures S1-S30: ¹H and ¹³C NMR of all new compounds generated in this study (p. S 3-S17)

Figures S31-S39: RP-HPLC traces showing the purity of all dimers from this study (p. S18-S21)

Figure S40: SDS-PAGE of the purified CPT and CNR CAM resistance enzymes (p. S21)

against various drug-modifying enzymes.							
Compound #	AAC(6')/APH(2")	AAC(3)-IV	AAC(6')-Ib'	AAC(2')-Ic	Eis	ANT(4')	
16	34 ± 1	200 ± 26	39 ± 11	244 ± 10	404 ± 9	90 ± 10	
18	30 ± 1	143 ± 21	20 ± 5	165 ± 1	253 ± 1	38 ± 1	
22	34 ± 2	142 ± 18	31 ± 4	156 ± 3	269 ± 2	28 ± 2	
20	80 ± 3	184 ± 28	37 ± 4	203 ± 16	287 ± 14	63 ± 9	
6	^b	^b	^b	^b	^b	49 ± 4	
Compound #	СРТ	CNR	CATI				
13	51 ± 8	106 ± 41	^b				
22	91 ± 21	117 ± 43	70 ± 2				
26	139 ± 21	220 ± 76	73 ± 3				
24	96 ± 12	174 ± 74	69 ± 4				
20	110 ± 12	76 ± 28	82 ± 2				
23	97 ± 14	133 ± 43	10 ± 1				
25	33 ± 7	10 ± 1	3 ± 1				
TOP (1) and (AM (2) activity war	ast at 10007 fam					

Table S1. Relative activity (%) for TOB and CAM derivatives compared to the parent drugs ^a TOB (1) and CAM (3)
against various drug-modifying enzymes.

^aTOB (1) and CAM (3) activity were set at 100% for comparison purposes. ^b-- indicates not tested as the assay could not be utilized as it detects free thiols.

Fig. S2. 13 C NMR in D₂O for compound 6.

S5

S6

Fig. S14. ¹³C NMR in CD₃OD for compound 14.

Fig. S22. ¹³C NMR in D_2O for compound 22.

Fig. S26. ¹³C NMR in CD₃OD for compound compound 24.

S16

Fig. S30. ¹³C NMR in CD₃OD for compound 26.

Table S2. Purity of new dimers as determined by RP-HPLC (see Figs. S31-S39 below).						
Compound #	Retention Time (min)	Purity (%)	λ max (nm)			
10	13.19	97	210			
16	14.36	97	294			
18	9.82	96	245			
20	8.08	99	345			
22	9.70	>99	263			
23	12.25	98	243			
24	13.98	>99	295			
25	13.06	98	374			
26	15.24	97	384			

Fig. S31. RP-HPLC trace for compound 10.

Fig. S32. RP-HPLC trace for compound 16.

Fig. S33. RP-HPLC trace for compound 18.

Fig. S35. RP-HPLC trace for compound 22.

Fig. S36. RP-HPLC trace for compound 23.

Fig. S38. RP-HPLC trace for compound 25.

Fig. S39. RP-HPLC trace for compound 26.

Fig. S40. Coomassie blue-stained 15% Tris-HCl SDS-PAGE gel showing the purified 29.2-kDa CPT (Lane 1) and 22.3-kDa CNR (Lane 2) CAM resistance enzymes. $L = BenchMark^{TM}$ Pre-Stained Ladder from Invitrogen. 6 µg of each protein was loaded on the gel.