Appendix S1: Equations of the neuron models

CPG-neurons and interneurons

The constituent currents are

 I_{NaP} : slowly inactivating Na- current;

 I_L : leakage current;

 I_{syn} : synaptic current from other neurons;

 I_{app} : input current (e.g. from sense organs or from the brain).

The model equations read:

CmdV /dt = −(INaP + I^L + Isyn + Iapp) with (1)

$$
I_{NaP} = g_{NaP} m_{\infty}(V) h(V - E_{Na})
$$
\n(2)

$$
I_L = g_L(V - E_L) \tag{3}
$$

$$
I_{syn} = g_{syn} s_{\infty} (V_{syn}) (V - E_{syn}) \tag{4}
$$

$$
I_{app} = g_{app}(V - E_{app}) \t and \t (5)
$$

$$
dh/dt = (h_{\infty}(V) - h)/\tau_h(V). \tag{6}
$$

The membrane potential $V(t)$ and the inactivation variable $h(t)$ of I_{NaP} are the model variables, both are functions of time. The function $m_{\infty}(V)$ is the steady-state value at V of the activation variable m of I_{NaP} , and $h_{\infty}(V)$ is the steady-state value (at V) of h. In eqn. 4, the function $s_{\infty}(V_{syn})$ is the actual value of the synaptic activation induced by another cell with membrane potential V_{syn} . All of these voltage functions have the same form:

$$
z_{\infty}(V) = 1/(1 + \exp(\gamma_z(V - V_{hz})))\tag{7}
$$

where $z = m, h, s$, while the formula for 'time constant' $\tau_h(V)$ reads

$$
\tau_h(V) = \frac{1}{\epsilon} \frac{1}{\cosh(\gamma_\tau (V - V_{\tau h}))}.\tag{8}
$$

The coefficients g_x in eqns. 2-5 are the maximal conductances of the membrane currents, and the parameters E_x the corresponding reversal potentials; C_m is the membrane capacitance.

Motoneurons

The constituent currents are:

 I_{Na} : fast inactivating Na-current of the action potential;

 I_K : delayed rectifier K-current of the action potential;

 I_q : 'adaptation' (K-)current;

 I_L : leakage current;

 I_{syn} : synaptic current from other neurons;

 I_{app} : input current (e.g. from sense organs or from the brain).

The current balance equation reads:

$$
C_m dV/dt = -(I_{Na} + I_K + I_q + I_L + I_{syn} + I_{app})
$$
\n(9)

The individual membrane currents are of the form:

$$
I_x = g_x m_x^p h_x (V - E_x). \tag{10}
$$

where $x = Na, K, q, L$ (I_{syn} and I_{app} are of the same form as in the CPG neuron model: eqns. 4, 5). The parameters g_x and E_x have the same meaning as before (see preceding section). The parameter p is an integer. The (in)activation variables h_x and m_x , respectively, obey a differential equation of the form:

$$
dy/dt = \alpha_y(V)(1-y) - \beta_y(V)y \tag{11}
$$

where y stands for h_x or m_x . The coefficients of eqn. 11 are nonlinear functions of the membrane potential V. They can have different forms depending on the type of the membrane current. The specific $\alpha(V)$ and $\beta(V)$ functions are listed below for each individual current type.

I_{Na} current

 $m_{Na}\!:$

$$
\alpha_{m_{Na}}(V) = \frac{a_{m1}(a_{m2} - V)}{\exp(a_{m3}(a_{m2} - V)) - 1} \tag{12}
$$

$$
\beta_{m_{Na}}(V) = \frac{b_{m1}(b_{m2} - V)}{\exp(b_{m3}(b_{m2} - V)) - 1} \tag{13}
$$

 $h_{Na}\!\!$:

$$
\alpha_{h_{Na}}(V) = a_{h1} \exp(a_{h3}(a_{h2} - V)) \tag{14}
$$

$$
\beta_{h_{Na}}(V) = \frac{b_{h1}}{\exp(b_{h3}(b_{h2} - V)) + 1} \tag{15}
$$

\mathcal{I}_K current

 m_K :

$$
\alpha_{m_K}(V) = \frac{a_{m1}(a_{m2} - V)}{\exp(a_{m3}(a_{m2} - V)) - 1} \tag{16}
$$

$$
\beta_{m_K}(V) = b_{m1} \exp(b_{m3}(b_{m2} - V)) \tag{17}
$$

Adaptation current \mathcal{I}_q

$$
m_{q\infty} = \frac{1}{1 + \exp(s_q(V - V_{hq}))}
$$
\n
$$
\tag{18}
$$

$$
r_q = const.
$$
 (19)

$$
\alpha_{m_K}(V) = m_{q\infty}r_q \tag{20}
$$

$$
\beta_{m_K}(V) = (1 - m_{q\infty})r_q \tag{21}
$$

where $m_{q\infty}$ is the steady-state value of m_q at a given value of V and r_q is the rate constant. For further details see [1,2].

References

- 1. Daun S, Rybak IA, Rubin J (2009) The response of a half-center oscillator to external drive depends on the intrinsic dynamics of its components: a mechanistic analysis. J Comput Neurosci 27: 3-36.
- 2. Daun-Gruhn S, Toth TI (2011) An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J Comput Neurosci 31: 43-60.