The American Journal of Human Genetics, Volume 93

Supplemental Data

The Roles of FMRP-Regulated Genes

in Autism Spectrum Disorder:

Single- and Multiple-Hit Genetic Etiologies

Julia Steinberg and Caleb Webber

Haploinsufficiency

Figure S1. The distribution of predicted probabilities of haploinsufficiency varies between all genes and FMRP Modules. The difference in distributions was tested with the Mann-Whitney U-test and is significant between all genes and each of the FMRP Modules.

ns = not significant; ** = p<0.01; *** = p<×10⁻⁸; error bars: most extreme point with distance \leq 1.5-fold interquartile range from the box.

Figure S2.Trend test *p*-values for random gene sets matched to all FMRP targets (A) and FMRP Module 2 (M2), using the Sanders datasets (see Methods).

Figure S3. Differences in proportion of ultrarare (MAF<0.02%) and rare (0.02%≤MAF≤1%) nonsynonymous variants between all

genes and FMRP Modules. Error bars: most extreme point with distance ≤1.5-fold interquartile range from the box.

Figure S4. Brain co-expression network of FMRP targets disrupted in ASD probands by *de novo* single-gene mutations and rare deletion CNVs. The network confirms the modular pattern with the genes from Modules 3 and 4 linking the more distinct clusters of disrupted genes from Module 1 and, separately, Module 2 (see Appendices). Brain expression was taken from BrainSpan, with links between genes representing a correlation of ≥ 0.8 . The disrupted hit reflect the functional enrichments in the modules: The 34 FMRP targets disrupted by damaging *de novo* single-gene mutations are significantly enriched in genes annotated with the GO terms "chromatin modification" (14.1-fold, $p=4.5\times10^{-7}$), "regulation of transcription, DNA dependent" (3.2-fold, $p=6.7\times10^{-4}$) when compared to both all genes and to all genes disrupted by damaging *de novo* single-gene mutations (Table S15). By contrast, the 76 FMRP targets disrupted by rare deletion CNVs are significantly enriched in genes "transmission of nerve impulse" (7.2-fold, $p=1.1\times10^{-6}$) and "synaptic transmission" (7.6-fold, $p=2.6\times10^{-6}$) when compared to the genomic background and to all genes disrupted by rare deletion CNVs in the cohorts from our study (Table S16).

Figure S5. FMRP targets disrupted in ASD probands by *de novo* single-gene mutations and rare deletion CNVs are significantly coexpressed in the human brain. A gene co-expression network was constructed from BrainSpan, with genes linked if they were correlated above a threshold of 0.5. Randomised gene sets matched for the number of genes were constructed as described in the **Appendices**. The experiment was repeated with four more stringent correlation thresholds.

Variation type	Dataset	Reference	Description	Analysis
<i>De novo</i> nonsense, splice-site, frameshift	l-exomes	lossifov <i>et al.</i> ¹⁰	59 disrupted genes in ASD probands	Enrichment
mutations	SON-exomes	Sanders <i>et al.</i> ¹³ , O'Roak <i>et al.</i> ¹¹ , Neale <i>et al.</i> ¹²	65 disrupted genes in ASD probands	Enrichment
Breakpoints of balanced chromosomal abnormalities	T-BCAs	Talkowski <i>et al.</i> ²⁴	32 disrupted genes in ASD probands	Enrichment
Rare deletion CNVs	Sanders probands/siblings	Sanders <i>et al</i> . ²⁶	Rare deletion CNVs of 872 ASD probands and matched unaffected siblings	Trend test
	Sanders probands/parents	Sanders <i>et al.</i> ²⁶	Rare deletion CNVs of 1124 ASD probands and their parents	Trend test
	AGP strict ASD/controls	Pinto <i>et al.</i> ²⁷	Rare deletion CNVs of 561 probands with "strict ASD" and 1146 unaffected controls	Trend test
SNPs	AGRE	AGRE; Wang <i>et al.</i> ³⁰	Autosomal SNPs of 1334 ASD cases and 1764 controls (family-based)	Transmission disequilibrium test and gene set analysis

Table S1 ASD datasets used in the analysis.

SNP	Minor/major allele	p-value (AGRE) Wang <i>et al</i>	tdt <i>p</i> -value
rs4307059	C/T	1.13*10 ⁻⁵	3.44*10 ⁻⁵
rs7704909	C/T	1.63*10 ⁻⁵	6.08*10 ⁻⁵
rs12518194	G/A	1.33*10 ⁻⁵	2.51 *10 ⁻⁵
rs4327572	T/C	2.23*10 ⁻⁵	4.19*10 ⁻⁵
rs1896731	C/T	1.73*10 ⁻³	0.01374
rs10038113	С/Т	1.43*10 ⁻³	0.0181

 Table S2 Results from the transmission disequilibrium (tdt) test for AGRE data compared to

analysis of highly overlapping cohort by Wang et al.

Foetal tissues	Adult tissues
Brain	Atrioventricular node
Liver	Adipocyte
Lung	Adrenal cortex
Thyroid	Adrenal gland
	Appendix
	Bronchial epithelial cells
	Cardiac myocytes
	Heart
	Kidney
	Liver
	Lung
	Ovary
	Pancreas
	Pancreatic Islets
	Pituitary gland
	Placenta
	Prostate
	Salivary gland
	Skeletal muscle
	Skin
	Smooth muscle
	Testis
	Testis Germ cell
	Thymus
	Thyroid
	Tougue
	Trachea
	Uterus
	Uterus corpus
	Whole blood
	Whole brain

 Table S3 Foetal and adult tissues used to determine tissue-specificity of genes.

Conclict	Adult					
Gene list	Intercept	BrainSpec _{adult}	CDS	FMRP		
Lavamaa	-6.09	-7.24×10 ⁻³	7.09×10 ⁻⁵	1.84		
I-exomes	(<2×10 ⁻¹⁶)	(0.80)	(0.001)	(7.85×10 ⁻⁹)		
SON-	-5.79	-0.16	6.16×10⁻⁵	1.80		
exomes	(<2×10 ⁻¹⁶)	(0.14)	(0.001)	(8.23×10 ⁻⁸)		
TRCAC	-6.56	-0.12	5.02×10⁻⁵	2.06		
I-DCAS	(<2×10 ⁻¹⁶)	(0.35)	(0.019)	(2.58×10 ⁻⁶)		
All	-5.20	-0.038	1.22×10 ⁻⁴	1.62		
combined	(<2×10 ⁻¹⁶)	(0.31)	(7×10 ⁻⁷)	(9.61×10 ⁻¹³)		
Cono list	Foetal					
Gene list	Intercept	BrainSpec _{foetal}	CDS	FMRP		
Lavamaa	-6.10	2.95×10 ⁻³	7.14×10 ⁻⁵	1.81		
i-exomes	(<2×10 ⁻¹⁶)	(0.67)	(0.001)	(4.97×10 ⁻⁹)		
SON-	-5.90	-0.05.5	6.41×10 ⁻⁵	1.66		
exomes	(<2×10 ⁻¹⁶)	(0.47)	(0.001)	(6.31×10 ⁻⁷)		
TRCAC	-6.71	5.23×10 ⁻³	5.23×10⁻⁵	1.86		
I-DCAS	(<2×10 ⁻¹⁶)	(0.1)	(0.012)	(7.69×10 ⁻⁶)		
All	-5.26	3.91×10 ⁻³	1.27×10 ⁻⁴	1.53		
	10		7	10		

Table S4 Logistic regression shows that after accounting for relative brain specificity and length of coding sequence (CDS; in base pairs), being targeted by FMRP significantly increases the probability of a gene to be found disrupted by a single-gene *de novo* mutation in ASD based on three such lists and their combination. Table shows the coefficients from logistic regression, with *p*-values in parentheses.

Gene Ontology gene set	Enrichment <i>p</i> -value	Fold enrichment	Module 1 genes in gene set	FMRP targets in gene set
transcription (BP,0006350)	8.84×10 ⁻¹²	1.85	71	114
regulation of transcription (BP,0045449)	3.88×10 ⁻⁹	1.65	77	139
chromatin modification (BP,0016568)	7.73×10 ⁻⁹	2.26	32	42
chromatin organization (BP,0006325)	2.11×10 ⁻⁸	2.21	32	43
chromosome organization (BP,0051276)	2.29×10 ⁻⁸	2.18	33	45
nucleoplasm part (CC,0044451)	3.01×10 ⁻⁷	2.07	32	46
regulation of transcription, DNA dependent (BP,0006355)	5.59×10 ⁻⁷	1.66	57	102
regulation of RNA metabolic process (BP,0051252)	5.59×10 ⁻⁷	1.66	57	102

Table S5 8 GO biological processes (BP) and cellular component (CC) gene sets most significantly

enriched among FMRP Module 1, with all FMRP targets as background. All shown enrichments are

significant at 5% FDR (Benjamini-Hochberg).

MGI phenotype	Enrichment <i>p</i> -value	Fold enrichment	Module 2 genes annotated with phenotype	FMRP targets annotated with phenotype
abnormal synaptic transmission	2.5×10 ⁻⁶	1.51	57	121
abnormal CNS synaptic transmission	9.90×10 ⁻⁶	1.53	51	107
abnormal synaptic depression	6.26×10 ⁻⁵	2.07	20	31
abnormal nervous system physiology	0.0002	1.23	80	209
convulsive seizures	0.0005	1.81	22	39

Table S6 MGI nervous system and behaviour/neurological subphenotypes significantly enriched among FMRP Module 2 genes at 5% FDR (Benjamini-Hochberg), with all FMRP targets as background.

Gene Ontology gene set	Enrichment <i>p</i> -value	Fold enrichment	Module 2 genes in gene set	FMRP targets in gene set
synapse part (CC,0044456)	4.90×10 ⁻⁶	2.01	30	51
synapse (CC,0045202)	6.41×10 ⁻⁶	1.77	41	79
plasma membrane (CC,0005886)	1.08×10 ⁻⁵	1.33	107	276
cation transport (BP,0006812)	1.93×10 ⁻⁵	1.85	33	61
metal ion transport (BP,0030001)	2.44×10 ⁻⁵	1.90	30	54
ion transport (BP,0006811)	5.21×10⁻⁵	1.73	36	71
cell junction (CC,0030054)	0.0002	1.64	37	77
membrane fraction (CC,0005624)	0.0003	1.59	39	84

 Table S7
 8 GO biological processes and cellular components gene sets most significantly enriched

among FMRP Module 2, with all FMRP targets as background. All shown enrichments are significant at 5% FDR (Benjamini-Hochberg).

		Mann-Whitney U-test p-value				
Variants	MAF	FMRP Module 1	FMRP Module 2	FMRP Module 1		
		vs all genes	vs all gelles	vs lviouule 2		
	<0.02%	4.69×10 ⁻¹⁰	0.3408	7.83×10⁻ ⁶		
All variants	0.02%-1%	0.001	0.2617	9.40×10 ⁻⁵		
	>1%	0.00016	0.02515	0.2478		
Missense, splice,	<0.02%	4.75×10 ⁻¹⁴	0.0004104	0.003439		
introducing/removing	0.02%-1%	1.99×10 ⁻⁶	0.5304	0.003101		
stop codon	>1%	0.0005735	5.63×10⁻⁵	0.4649		
Polyphen "possibly	<0.02%	1.00×10 ⁻⁰⁶	0.005737	0.164		
damaging" and	0.02%-1%	0.001202	0.15	0.2124		
"probably damaging"	>1%	0.1177	0.03083	0.4569		

Table S8 Differences in proportion of ultra-rare (MAF<0.002%), rare ($0.002\% \le MAF \le 1\%$) and common (MAF>1%) variants between all genes, FMRP Modules 1 and 2. Yellow: significant at 5% FDR (correction for the number of tests in each variant classification).

	l-e	exomes (59 ge	nes)	SON-exomes (65 genes)			
FMRP gene set	Number of genes in overlap	Enrichment <i>p</i> -value	Fold enrichment	Number of genes in overlap	Enrichment <i>p</i> -value	Fold enrichment	
All FMRP targets ^a	15	6.07×10 ^{-7 b}	4.53	13	5.49×10 ⁻⁵ ^b	3.56	
Module 3	6	1.16×10 ^{-7 b}	11.73	3	0.0188 ^b	5.33	
Module 1 ^a	6	0.0009 ^b	5.32	7	0.0002 ^b	5.63	
Module 2	2	0.2420	2.13	0	1	-1.00	
Module 4	1	0.3780	2.12	1	0.4074	1.92	
	T PCAs (22 games)			T-BCAs without overlap with			
EMPD gono	•	-DCAS (52 gen	es)	SON-exomes (29 genes)			
set	Number of genes in overlap	Enrichment <i>p</i> -value	Fold enrichment	Number of genes in overlap	Enrichment <i>p</i> -value	Fold enrichment	
All FMRP targets ^a	8	0.0003 ^b	4.45	6	0.0048 ^b	3.68	
Module 3	2	0.0212	7 21	2	0.0260	7.96	
	2	0.0512	/.21				
Module 1 ^a	6	2.78×10 ⁻⁵ ^b	9.80	4	0.0021 ^b	7.21	
Module 1 ^ª Module 2	6 0	2.78×10 ^{-5 b}	9.80	4	0.0021 ^b	7.21	

```
Table S9 ASD de novo single-gene disruptions are significantly enriched in FMRP targets,
```

particularly in Module 1 genes.

^a = gene set significantly enriched in I-exomes, SON-exomes and T-BCAs; ^b = enrichment significant at 5% FDR (Benjamini-Hochberg)

Dataset	Intercept	CDS	Mod1	Mod2	Mod3	Mod4
Lovomoo	-6.10	6.77×10 ⁻⁵	1.94	1.14	2.72	1.04
1-exomes	(<2×10 ⁻¹⁶)	(8×10 ⁻⁴)	(1.29×10 ⁻⁵)	(0.12)	(2.72×10 ⁻⁹)	(0.31)
SON-	-5.93	6.35×10 ⁻⁵	1.96	-1.28	1.86	0.90
exomes	(<2×10 ⁻¹⁶)	(0.001)	(2.17×10⁻⁶)	(0.98)	(0.002)	(0.38)
	-6.70	4.95×10⁻⁵	2.64	-1.3	2.30	-1.31
I-DCAS	(<2×10 ⁻¹⁶)	(0.03)	(1.66×10 ⁻⁸)	(0.99)	(0.002)	(0.99)
All	-5.22	1.18×10 ⁻⁴	1.88	0.092	2.20	0.62
combined	(<2×10 ⁻¹⁶)	(2.41×10 ⁻⁶)	(3.34×10 ⁻¹⁰)	(0.90)	(3.97×10 ⁻¹⁰)	(0.39)

Table S10 Logistic regression shows that after accounting for relative brain specificity and length of coding sequence (CDS; in base pairs), being targeted by FMRP significantly increases the probability of a gene to be found disrupted by a single-gene *de novo* mutation in ASD based on three such lists and their combination. Table shows the coefficients from logistic regression, with *p*-values in parentheses.

		a) 800 ca	ses, 800 con	trols		
Fisher's test			0	R		
Controls with	1.5	2.0	2.5	3.0	3.5	4.0
1+ hits	4.21.10 ⁻¹	0.50.10-2	4 55.40-2	1.00.10-3	2.02.10 ⁻⁴	4 70.40-5
10	4.21×10	9.56×10	1.55×10	1.96×10 ⁻⁶	2.03×10	1.79×10
20	1.95×10	1.18×10	3.28×10	5.08×10	4.99×10	3.39×10
30	9.72×10	1.52×10	6.67×10	1.12×10	8.82×10	3.70×10
40	4.92×10	1.91×10	1.20×10	1.91×10	9.90×10	2.00×10 4.90×10 ⁻²⁶
50	2.50×10	2.28×10^{-6}	1.80×10	2.37×10	0.55×10	4.80×10 4.55×10 ⁻³²
70	1.27×10^{-3}	2.54×10	2.40×10	2.06×10	2.57×10	4.55×10
70	0.33×10	2.62×10	2.53×10	1.21×10	4.36×10	1.50×10 1.49×10 ⁻⁴⁵
80	3.12×10	2.49×10	2.14×10	4.56×10	3.//×10	1.48×10
Trend test			0	R		
Controls with						
1+ hits	1.5	2.0	2.5	3.0	3.5	4.0
10	3.13×10 ⁻¹	6.53×10 ⁻²	1.04×10 ⁻²	1.36×10 ⁻³	1.57×10 ⁻⁴	1.63×10 ⁻⁵
20	1.51×10 ⁻¹	8.49×10 ⁻³	2.46×10 ⁻⁴	4.47×10 ⁻⁶	5.79×10 ⁻⁸	5.76×10 ⁻¹⁰
30	7.60×10 ⁻²	1.13×10 ⁻³	5.54×10⁻⁵	1.23×10 ⁻⁸	1.52×10 ⁻¹¹	1.17×10 ⁻¹⁴
40	3.89×10 ⁻²	1.47×10 ⁻⁴	1.11×10 ⁻⁷	2.62×10 ⁻¹¹	2.54×10 ⁻¹⁵	1.18×10 ⁻¹⁹
50	1.99×10 ⁻²	1.80×10⁻⁵	1.88×10⁻ ⁹	4.05×10 ⁻¹⁴	2.49×10 ⁻¹⁹	5.27×10 ⁻²⁵
60	1.01×10 ⁻²	2.06×10⁻ ⁶	2.68×10 ⁻¹¹	4.40×10 ⁻¹⁷	1.34×10 ⁻²³	9.40×10 ⁻³¹
70	5.06×10 ⁻³	2.19×10 ⁻⁷	3.11×10 ⁻¹³	3.22×10 ⁻²⁰	3.72×10 ⁻²⁸	5.94×10 ⁻³⁷
80	2.50×10 ⁻³	2.13×10 ⁻⁸	2.89×10 ⁻¹⁵	1.52×10 ⁻²³	4.88×10 ⁻³³	1.16×10 ⁻⁴³
Fish and a tast		b) 600 ca	ses, 600 con	trols		
Fisher's test			0	ĸ		
Controls with 1+ hits	1.5	2.0	2.5	3.0	3.5	4.0
10	4.19×10 ⁻¹	9.45×10 ⁻²	1.51×10 ⁻²	1.87×10 ⁻³	1.89×10^{-4}	1.62×10⁻⁵
20	1.93×10 ⁻¹	1.13×10 ⁻²	2.95×10 ⁻⁴	4.21×10 ⁻⁶	3.71×10 ⁻⁸	2.20×10 ⁻¹⁰
30	9.44×10 ⁻²	1.36×10 ⁻³	5.21×10⁻ ⁶	7.16×10-9	4.30×10 ⁻¹²	1.28×10 ⁻¹⁵
40	4.67×10 ⁻²	1.56×10 ⁻⁴	7.56×10-8	8.12×10 ⁻¹²	2.49×10 ⁻¹⁶	2.56×10 ⁻²¹
50	2.30×10 ⁻²	1.63×10 ⁻⁵	8.61×10 ⁻¹⁰	5.67×10 ⁻¹⁵	6.32×10 ⁻²¹	1.41×10 ⁻²⁷
60	1.12×10 ⁻²	1.54×10⁻⁵	7.38×10 ⁻¹²	2.26×10 ⁻¹⁸	6.10×10 ⁻²⁶	1.69×10 ⁻³⁴
				_		
Trend test			0	К		
	1.5	2.0	2.5	3.0	3.5	4.0
	3 12×10 ⁻¹	6 45×10 ⁻²	1 01×10 ⁻²	1 30×10 ⁻³	1 <u>45×</u> 10 ⁻⁴	1 46×10 ⁻⁵
20	1 49×10 ⁻¹	8 07×10 ⁻³	2 20×10 ⁻⁴	3 67×10 ⁻⁶	4 25×10 ⁻⁸	3 69×10 ⁻¹⁰
30	7.36×10 ⁻²	1.01×10 ⁻³	4.28×10 ⁻⁰⁶	7 76x10 ⁻⁹	7 29×10 ⁻¹²	3.05×10 3.97×10 ⁻¹⁵
40	3.67×10 ⁻²	1.19×10 ⁻⁴	6.84×10 ⁻⁸	1 09×10 ⁻¹¹	6.24×10^{-16}	1.47×10^{-20}
50	1.82×10 ⁻²	1.27×10 ⁻⁵	8.55×10 ⁻¹⁰	9 49×10 ⁻¹⁵	2 35×10 ⁻²⁰	1.77×10^{-26}
60	8.83×10 ⁻³	1.23×10 ⁻⁶	8 05×10 ⁻¹²	4 71×10 ⁻¹⁸	3 41×10 ⁻²⁵	3.55×10^{-33}
00	0.03^10	1.23410	0.00^10	-T./ 1/10	J. TIVIU	2.22410

Table S11. Trend and Fisher's tests p-values for case/control datasets of two sizes: a) 800 cases,800 controls and b) 600 cases, 600 controls. In all scenarios, each individual has 0 or 1 hits; thesmallerp-valuefromFisher's/Trendcomparisonisinbold.Number of cases with 1 hit in pathway

 $OR = \frac{Number of cases with 1 hit in pathway}{Number of controls with 1 hit in pathway}.$

Consist	a) ASD Matched Probands vs Siblings (Sanders)						
Gene set	Trend test <i>p</i> -value	Cases with Hit	Controls with Hit	Emp. <i>p</i> -value			
Module 2 ^a	0.0011	23	6	0.0016 ^b			
All FMRP targets ^a	0.0012	54	29	0.0017 ^b			
Module 4	0.0045	15	3	0.0111 ^b			
Module 1	0.0066	23	8	0.0080 ^b			
Module 3	1	9	9	N/A			
Cono cot	b) ASD Probands	vs Parents (Sanders)			
Gene set	Trend test <i>p</i> -value	Cases with Hit	Controls with Hit	Emp. <i>p</i> -value			
Module 2 ^ª	0.0008	26	21	0.0042 ^b			
All FMRP targets ^a	0.0039	68	89	0.0193 ^b			
Module 4	0.0650	20	23	N/A			
Module 1	0.0514	29	36	N/A			
Module 3		1	N/A				
Gono sot		c) ASD strict case	es vs controls (AGP)				
Gene set	Trend test <i>p</i> -value	Cases with Hit	Controls with Hit	Emp. <i>p</i> -value			
Module 2 ^ª	0.0014	8	2	0.0134 ^b			
All FMRP targets ^a	2.76×10 ⁻⁵	20	9	0.0009 ^b			
Module 4							
Module 1	N/A						
Module 3							

Table S12. The Trend test shows that disruptions of FMRP targets and Module 2 in particularly by rare deletion CNVs are significantly associated with ASD. "Hits" are defined as a rare deletion CNV overlapping a pathway gene such that at least one exon from every transcript is affected. Empirical *p*-values were obtained from 10,000 random gene sets matched for gene number and length (see **Methods**). Gene sets with significant results in a) were validated in b); likewise, results validated in b) were tested for replication in c).

^a = empirical *p*-value for gene set is significant for a)-c) at 5% FDR (Benjamini-Hochberg);

^b = significant at 5% FDR (Benjamini-Hochberg).

Module	Independent SNPs (r2=0.5)	Mean χ2 statistic	Empirical <i>p</i> -value	
Mod1	4505	1.205	0.2879	
Mod2	3211	1.289	0.0062 ª	
Mod3	3187	1.252	0.1345	
Mod4	812	1.191	0.4509	

Table S13. FMRP Mod2 is associated with ASD diagnosis based on a family-based GWAS (AGRE

data), using a set-based transmission-disequilibrium test in Plink. ^a = significant at 5% FDR

(Benjamini-Hochberg)

Gene Symbol	Ensembl ID	chr	FMRP mod	Disrupted in I- or SON- exomes, T- BCAs, Sanders or AGP CNVs	ASD cand. gene ^a	GO BP or CC ^ь	MGI ^c
ABCA3	ENSG0000167972	16	Л	San			ΒΝ ΜΔ
ABR	ENSG000001598/2	17	1			sc	BN MA NS
	ENSG00000105963	7	2	San		50	BN, MA, NO
	ENSG00000101126	20	1	SON		TR	MA NS F
ΔΚΤ3	ENSG00000117020	1	1	San			
ΔΙΠΟΔ	ENSG00000149925	16	2	AGP San			BIN, IVII (, ING
	ENSG00000145362	10	2				
	ENSG00000143302	10	3	т	s	s	BN MA NS
	ENSC0000010107282	10	2	San	5	3 C	BN,MA,NS
AFBAI APE2	ENSC00000107282	12	2	San		3	BN, MA, NS
	ENSC00000134287	12	2		c		
ARIDID	ENSC0000049018	22	1		3		
ATC2A	ENSC00000110046	11	1	AGF, Jali			
ATG2A	ENSC0000110040	1	2				N4A
	ENSC0000143133		2	т Т	٨٥		IVIA
AUTS2	ENSG00000158321	/	1	l Son	A, S		
BIVIPR2	ENSG00000204217	10	1			50	
BRSKI	ENSG00000160469	19	2	AGP		SC	BIN,IVIA,INS
C1907J26	ENSG0000099625	19	2	San	C		
CACNAIB	ENSG0000148408	9	4	San	3	50	BIN,IVIA,INS
	ENSG00000198752	14	4	SUN		SC	
		Z V	2				DIN,IVIA,INS,E
CDKL5	ENSG0000008086	X 1	3	l Com	А, В, З	тр	NC
CELSR2	ENSG0000143120	14	4		C		
	ENSG00000100888	14	1	SON, I, San	5	CIVI, I R	
	ENSG00000169862	2	1	San	A		BIN,INS
	ENSG00000070413	22	4	AGP, San			
DIPZA	ENSG00000160305	21	1	I, San			
DIPZC	ENSG00000151240	10	1	l Con			
DUCK4	ENSG00000128512	1	1	San			
DPP8	ENSG00000174603	15	3	San			
DSI	ENSG00000151914	6	3				BN, IVIA, NS
	ENSG00000181090	9	1		в (,5)	CIVI, I R	BIN,IVIA,INS,E
FAMILISB	ENSG00000198420	/	1				
FAM91A1	ENSG00000176853	8	3	I, AGP			
FASN	ENSG00000169/10	1/	1	San			BN,MA,NS
FBXL16	ENSG00000127585	16	2	San		TDC	
GRINI	ENSG00000176884	9	2	San	C	TR,S	BN,MA,NS
GRIN2B	ENSG00000150086	12	1	1	5	S	BN,MA,NS
	ENSG00000150995	3	2	san .		5	BIN,IVIA,NS
JMJD3	ENSG00000132510	17	1	1			MA
KCND2	ENSG00000184408	7	0	San		S	BN,NS
KCNQ3	ENSG00000184156	8	3	San			BN,MA,NS
KCNT1	ENSG00000107147	9	2	AGP			
KIAA0100	ENSG0000007202	17	1	SON			
KIAA0430	ENSG00000166783	16	3	AGP, San			
KIF1A	ENSG00000130294	2	2	San			BN,MA,NS

KLHL22	ENSG00000185214	22		AGP. San			
IMTK3	ENSG00000142235	19	4	1			
IPHN3	ENSG00000150471	4	1	San			
MAN2A2	ENSG0000196547	15	2	San			MA
MAZ	ENSG0000103495	16	1	AGP. San			
MBD5	ENSG0000204406	2	1	SON. T	В		
MFD13L	ENSG00000123066	12	1	1		TR	
MLL3	ENSG0000055609	7	1	SON, San		CM.TR.SC	MA
MU5	ENSG0000005483	7	1	1		CM TR SC	MA
MTOR	ENSG00000198793	1	3	San		SC	BN MA NS F
MTSS1/	ENSG0000132613	16	0	San			
NAV3	ENSG0000067798	12	1	San			
NCDN	ENSG0000020129	1	2	San			BN.MA.NS.F
NCKAP1	ENSG0000061676	2	3	1	(5?)		MAINSIE
NF1	ENSG00000196712	17	3	San	A.B.S	SC	BN MA NS F
NI GN3	ENSG0000196338	x	4	San	A. B. S.	S	BN MA NS
NOMO1	ENSG0000103512	16	2	AGP. San	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
NRXN1	ENSG00000179915	2	3		A.B.S	S	MAINS
PACS2	ENSG00000179364	14	<u>ح</u>	San	7, 0, 0	5	1111,110
PGM2L1	ENSG00000165434	11	3	San			
ΡΙΔΚΑ	ENSG00000133511	22	5	AGP San		SC	
PIGO	ENSG0000007541	16	Δ	San		50	
PIEC	ENSG00000178209	8	2				ΒΝ ΜΔ Νς
	ENSG00000170205	2	0			sc	
PPP2R5B	ENSG0000068971	11	<u></u> Д	San		50	
PRFX1	ENSG00000124126	20	0	San		SC	BN NS
PRKACB	ENSG00000124120	1	3	San		SC	BN MA NS F
PRRC2B	ENSG00000130723	9	1	San		50	
PTPRT	ENSG00000196090	20	3	San			
R3HDM1	ENSG0000048991	20	3	AGP			
RAD2111	ENSG00000101298	20	2	1		s	BN NS
RAIGDS	ENSG00000160271	9	1	AGP		sc	511,113
RFIN	ENSG00000189056	7	0	SON	S		BN MA NS
RTN4R	ENSG0000040608	22	2	AGP San			BN NS
SCN2A	ENSG00000136531	22	3	SON	S		511,113
SEPT5	ENSG00000184702	22	2	AGP San		s	BN NS
SE76L2	ENSG00000174938	16	2	AGP San	S	5	BN NS
SHANK2	ENSG0000162105	11	3	SON AGP	A.B.S	S.SC	511,110
SI C8A2	ENSG00000118160	19	2	AGP	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00	BNINS
SMARCA2	ENSG0000080503	9	1	AGP		CM_TR	MA
SMARCC2	ENSG00000139613	12	1	SON		CM.TR	
SORI 1	ENSG00000137642	11	2	San			NS
SPAG9	ENSG0000008294	17	1	San		SC	
SYNGAP1	ENSG00000197283	6	4	AGP	B.S.		BN MA NS
ΤΑΟΚ2	ENSG00000149930	16	4	AGP. San	2,0	SC	
TCE25	ENSG0000141002	16	4	AGP		TR	
TCF4	ENSG00000196628	18	1	T		TR	MAINS
TIF3	ENSG00000140332	15	<u></u> Δ	San	1	TR	MA
TNRC6B	ENSG00000100354	22	1	San			
TNS3	ENSG00000136205	7	0	San		SC	МА
TRIM32	ENSG00000119401	, 9	1	AGP			BN.NS
TRIP12	ENSG00000153827	2	1				
			-	1	1	1	1

TRPM3	ENSG0000083067	9	0	AGP		
ТТҮНЗ	ENSG00000136295	7	1	San		
UBR3	ENSG00000144357	2	3	SON		BN,MA
ULK1	ENSG00000177169	12	4	San	SC	MA
UNC13C	ENSG00000137766	15	2	San	S,SC	BN,NS
WDFY3	ENSG00000163625	4	3	1		
ZCCHC14	ENSG00000140948	16	1	San		

Table S14. FMRP targets disrupted in ASD by de novo single-gene mutations and rare deletion

CNVs.

^a = ASD candidate genes from AGP (A) [12], C. Betancur [36] and SFARI gene (S)

[https://gene.sfari.org; 07/01/2013].

^b = GO BP or CC annotations: CM (chromatin modification, BP,0016568), TR (regulation of

transcription, DNA dependent, BP,0006355), S (synapse, CC,0045202), SC (intracellular signalling cascade, BP,0007242).

^c = MGI annotations: NS (nervous system phenotype), BN (behaviour/neurological phenotype), MA (mortality/aging phenotype).

			Disrupted	
Gene Ontology gene set	Enrichment	Fold	FMRP	Total genes
Gene Ontology gene set	<i>p</i> -value	enrichment	targets in	in gene set
			gene set	
chromatin modification (BP,0016568) ^a	4.48×10 ⁻⁷	14.12	7	280
chromatin organization (BP,0006325) ^a	7.18×10 ⁻⁶	9.30	7	425
chromosome organization (BP,0051276) ^a	3.22×10 ⁻⁵	7.38	7	536
plasma membrane part (CC,0044459) ^a	5.95×10 ⁻⁵	3.19	13	2299
cell junction (CC,0030054) ^a	0.000275	6.42	6	528
cell morphogenesis (BP,0000902) ^a	0.000399	7.78	5	363
synapse (CC,0045202) ^a	0.000399	7.78	5	363
cellular component morphogenesis				
(BP,0032989) ^a	0.000642	7.01	5	403
regulation of transcription DNA				
dependent (BP,0006355) ^a	0.000671	3.15	10	1790
regulation of RNA metabolic process				
(BP,0051252) ^a	0.000821	3.08	10	1836
cell part morphogenesis (BP,0032990) ^a	0.001033	8.79	4	257
neuron projection development				
(BP,0031175) ^a	0.001079	8.69	4	260
positive regulation of transcription DNA				
dependent (BP,0045893) ^a	0.001512	5.79	5	488
positive regulation of RNA metabolic				
process (BP,0051254) ^a	0.001568	5.74	5	492
regulation of transcription from RNA				
polymerase II promoter (BP,0006357)	0.001623	4.58	6	740
neuron projection (CC,0043005) ^a	0.002876	6.64	4	340
neuron development (BP,0048666) ^a	0.002938	6.60	4	342
positive regulation of transcription				
(BP,0045941) ^a	0.003118	4.90	5	576
positive regulation of gene expression				
(BP,0010628) ^a	0.003533	4.76	5	593
negative regulation of transcription DNA				
dependent (BP,0045892)	0.003638	6.22	4	363

Table S15. GO biological process (BP) and cellular component (CC) terms significantly enriched among FMRP targets disrupted by *de novo* single-gene mutations from I-exomes, SON-exomes and T-BCAs against all genes in the genome at 5% FDR (Benjamini-Hochberg). ^a = enrichments replicated against a background of all genes disrupted by *de novo* single-gene mutations from I-exomes, SON-exomes and T-BCAs at 5% FDR.

	Enrichment	Fold	Disrupted EMRP	Total genes
Gene Ontology gene set	<i>p</i> -value	enrichment	targets in	in gene set
	<i>p</i>		gene set	
transmission of nerve impulse				
(BP,0019226)	1.13×10 ⁻⁶	7.18	10	351
synaptic transmission (BP,0007268)	2.61×10 ⁻⁶	7.58	9	299
membrane bounded vesicle (CC,0031988)	1.58×10⁻⁵	4.78	11	580
intracellular signaling cascade				
(BP,0007242)	3.70×10 ⁻⁵	3.09	16	1305
cytoplasmic membrane bounded vesicle	_			
(CC,0016023)	6.84×10 ⁻⁵	4.48	10	562
vesicle (CC,0031982)	7.02×10 ⁻⁵	4.06	11	683
regulation of small GTPase mediated	_			
signal transduction (BP,0051056)	8.39×10 ⁻⁵	6.66	7	265
synapse (CC,0045202)	9.04×10⁻⁵	5.55	8	363
cytoplasmic vesicle (CC,0031410)	0.000237	3.85	10	654
synapse part (CC,0044456)	0.000494	5.98	6	253
metal ion transport (BP,0030001)	0.0005	4.32	8	467
cell cell signaling (BP,0007267)	0.000684	3.69	9	615
cation transport (BP,0006812)	0.001615	3.60	8	560
neuron projection (CC,0043005)	0.00226	4.45	6	340
regulation of phosphorylation				
(BP,0042325)	0.002662	3.72	7	474
regulation of protein kinase activity				
(BP,0045859)	0.002724	4.28	6	353
regulation of kinase activity (BP,0043549)	0.003213	4.14	6	365
regulation of phosphate metabolic				
process (BP,0019220)	0.00331	3.58	7	493
regulation of phosphorus metabolic				
process (BP,0051174)	0.00331	3.58	7	493
ion transport (BP,0006811)	0.003399	2.92	9	776
regulation of transferase activity				
(BP,0051338)	0.003964	3.97	6	381

Table S16. GO biological process (BP) and cellular component (CC) terms significantly enriched

among FMRP targets disrupted by rare deletion CNVs in ASD probands from AGP and Sanders

datasets against all genes in the genome at 5% FDR (Benjamini-Hochberg). All significant

enrichments were replicated against a background of all genes disrupted by rare deletion CNVs in

ASD probands from AGP and Sanders datasets at 5% FDR.