The American Journal of Human Genetics, Volume 93

#### **Supplemental Data**

# Germline Mutations in NFKB2 Implicate the Noncanonical

# NF-κB Pathway in the Pathogenesis

# of Common Variable Immunodeficiency

Karin Chen, Emily M. Coonrod, Attila Kumánovics, Zechariah Franks, Jacob D. Durtschi, Rebecca L. Margraf, Wilfred Wu, Nahla M. Heikal, Nancy H. Augustine, Perry G. Ridge, Harry R. Hill, Lynn B. Jorde, Andrew S. Weyrich, Guy A. Zimmerman, Adi V. Gundlapalli, John F. Bohnsack, and Karl V. Voelkerding



**Figure S1. Canonical and noncanonical NF-κB pathways.** Ligand mediated receptor activation of the NF-κB pathways on the cell surface leads to activation and nuclear translocation of NF-κB proteins into the nucleus where they bind their respective gene targets to initiate gene transcription and downstream cellular responses. The canonical pathway (left) is stimulated by a number of different ligand-receptor interactions. Receptor activation of the canonical pathway leads to stimulation of a kinase cascade that phosphorylates the IκB kinase (IKK) complex that consists of IKK $\alpha$ , IKK $\beta$ , and NF- $\kappa$ B essential modulator (NEMO, also known as IKK $\gamma$ ). IKK $\beta$  kinase phosphorylates the inhibitor I $\kappa$ B $\alpha$ , which normally sequesters NF- $\kappa$ B1 in the cytoplasm. Phosphorylation stimulates ubiquitination and subsequent proteasomal degradation of I $\kappa$ B $\alpha$ , resulting in release and nuclear localization of the p50/p65 dimer. The

p50/p65 dimer binds its genomic targets in the nucleus to initiate downstream inflammatory responses against infection. The noncanonical pathway (right) is stimulated by a limited number of ligand-receptor interactions. Receptors of this signaling pathway include BAFFR, RANK, lymphotoxin  $\beta$  receptor, and CD40. A key difference between the canonical and noncanonical NF- $\kappa$ B pathways is that while nuclear localization of p50/p65 is NEMO-dependent, the inactive form of NF- $\kappa$ B2, p100, acts as its own inhibitor, and activation of the noncanonical pathway is NEMO-*independent*. Receptor stimulation of the noncanonical pathway is NEMO-*independent*. Receptor stimulation of the noncanonical pathway results in accumulation of the NF- $\kappa$ B inducing kinase (NIK), which, under non-activating conditions, is rapidly turned over in the cytoplasm. NIK is a member of the mitogen activated pathway 3 kinase family and phosphorylates the IKK $\alpha$  kinase upon its cytoplasmic accumulation. Activation of lysine 855. Ubiquitination of p100 signals its processing by the proteosome to remove the C-terminus, forming p52. p52 in its heterodimeric configuration with RelB is then translocated into the nucleus where the active complex acts as a transcription factor to initiate downstream responses including peripheral lymphoid organogenesis, B-cell maturation, osteoclastogenesis, and thymic development.



Figure S2. Fingernail dystrophy with onychomycosis seen in CVID-affected individual P2.



**Figure S3. Mutant NF-\kappaB2 proteins are defective for p100 phosphorylation.** Western blot analysis from EBV-B cell whole cell lysates derived from unaffected (A.I.2 (lane 1), A.II.1 (lane 2), and pediatric control (lane 3)) and affected individuals (P2 (lane 4), P3 (lane 5), and P4 (lane 6)) with antibodies to NF- $\kappa$ B2, phosphorylated NF- $\kappa$ B2 (P-NF- $\kappa$ B2), and actin. Arrows indicate wildtype (100kDa) and mutant (94kDa) p100. Actin is shown as a loading control.

|                                               | Primer sequences 5'-3'                                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Sanger sequencing c.2564delA<br>and c.2557C>T | Forward ACCTCATTCCTCTGTCTTCTC<br>Reverse TGTCTTCCTTCACCTCTGCT                                             |
| Long range PCR 9,648 bp amplicon              | Forward 5AmMC6/CCTGGCCCGCTGGGAACCTGTCACTTC<br>Reverse 5AmMC6/CCGAGAGCCCCTTTTTGTGATAA                      |
| Long range PCR 9,695 bp amplicon              | Forward 5AmMC6/GGTGGATAAACACTTCATTTCCCTTCTCCTGAGCAG<br>Reverse 5AmMC6/CAGATGGTGGGGGTGGGCAGAAGGCAGAAGAAGAG |

 $Table \ S1. \ Primer \ sequences \ used \ in \ this \ study$ 

| Pedigree<br>Number | Individual | SNP<br>Concordance (%) |
|--------------------|------------|------------------------|
| A.II.1             | Father     | 99.2                   |
| P1                 | Mother     | 98.8                   |
| P2                 | Daughter   | 98.7                   |
| P3                 | Son        | 99.2                   |

Table S2. SNP Concordance between Cytoscan HD array data and exome sequencing data.

|                                    | P2   | P1   | A.II.1 | P3   |
|------------------------------------|------|------|--------|------|
| Raw data (Gb)                      | 13.2 | 13.8 | 15.9   | 16.1 |
| Base quality $\geq 30$ (%)         | 80%  | 82%  | 79%    | 77%  |
| Data mapped to target region (Gb)* | 4.0  | 3.4  | 4.4    | 3.9  |
| Bases with 1x coverage*            | 98%  | 98%  | 98%    | 98%  |
| Bases with 10x coverage*           | 95%  | 94%  | 95%    | 94%  |
| Bases with 20x coverage*           | 91%  | 88%  | 91%    | 88%  |
| Mean coverage*                     | 92x  | 78x  | 100x   | 89x  |
| SNVs detected (k)**                | 83.4 | 82.7 | 82.2   | 81.5 |
| Indels detected (k)**              | 12.1 | 11.7 | 12.8   | 11.9 |

\*after duplicate removal, base quality >=17 (infers 98% correct base calls), and mapping quality >=10 \*\*Nimblegen capture target regions +/- 100 bp, variant quality score >= 4

Table S3. NGS data output for exome sequencing of Family A.

| Filteringstep                                           | # of variants |        |        |
|---------------------------------------------------------|---------------|--------|--------|
| Total variants in each family member                    | ~150,000      |        |        |
| Remove low quality and non-coding variants <sup>a</sup> | ~22,000       |        |        |
| Remove common variants from daughter <sup>b</sup>       | 2,415         |        |        |
| Remove familial homozygous variants <sup>c</sup>        | 1,822         |        |        |
| Remove daughter's homozygous variants                   | 1760          |        |        |
| Intersect and difference <sup>d</sup>                   | 314           |        |        |
| Variants affecting protein function <sup>e</sup>        | 160           |        |        |
| Divide into MAF bins <sup>f</sup>                       | 0-1%          | 1-2.5% | 2.5-5% |
|                                                         | 98            | 30     | 32     |
| Prioritize by function                                  | 3             | 1      | 0      |
| Variants with supporting mouse model                    | 1             | 0      | 0      |

<sup>a</sup> Removed variants with base quality score  $\leq 10$ , read depth < 8, and outside of exons  $\pm 10$  bases.

<sup>b</sup> Removed variants with a 1000 Genomes minor allele frequency >5% in individual P2. <sup>c</sup> The homozygous variants found in the father (A.II.1), mother (P1), and brother (P3) were removed from the daughter's (P2) variant set.

<sup>d</sup> The heterozygous variants from P1 and P3 were removed from the heterozygous variants in P2. The heterozygous variants from A.II.1 were removed from the heterozygous variants in P2.

<sup>e</sup> Only missense, nonsense, and frameshift variants were further analyzed.

f 1000 Genomes frequencies.

#### Table S4. Heuristic filtering of exomes from Family A.

| Genomic<br>Position | <i>NFKB2</i> gene<br>Position | Genotype     | Protein<br>Change | dbSNP rs# | 1000<br>Genomes<br>Frequency | 5400<br>Exomes<br>Frequency | # of<br>Alleles<br>in Pool |
|---------------------|-------------------------------|--------------|-------------------|-----------|------------------------------|-----------------------------|----------------------------|
| 104153698           | 5′UTR                         | c1928C>A     |                   |           |                              |                             | 1                          |
| 104154876           | 5'UTR                         | c750A>G      |                   |           |                              |                             | 2                          |
| 104155345           | 5′UTR                         | c281T>C      |                   | 36226954  | 1.10%                        |                             | 1                          |
| 104155520           | Noncoding<br>Exon 2           | c106T>C      |                   |           |                              |                             | 1                          |
| 104155591           | Intron 2                      | c73+38C>T    |                   |           |                              |                             | 2                          |
| 104155597           | Intron 2                      | c73+44C>T    |                   |           |                              |                             | 2                          |
| 104155750           | Intron 3                      | c.21+13G>A   |                   |           |                              | 0.28%                       | 1                          |
| 104156383           | Intron 5                      | c.145-99T>G  |                   | 11574845  | 25%                          |                             | 1                          |
| 104156911           | Intron 7                      | c.395+99A>G  |                   | 12772374  | 16.80%                       |                             | 7                          |
| 104157711           | Intron 9                      | c.662-27T>G  |                   | 7897947   | 28%                          | 24%                         | 17                         |
| 104157947           | Intron 10                     | c.767-22C>A  |                   | 45487496  | 1.80%                        | 1.80%                       | 1                          |
| 104158993           | Intron 13                     | c.1118-52T>C |                   |           |                              |                             | 1                          |
| 104158994           | Intron 13                     | c.1118-51G>T |                   |           |                              |                             | 1                          |
| 104159323           | Intron 14                     | c.1328-11G>A |                   |           |                              |                             | 1                          |
| 104160643           | Intron 18                     | c.1969-61A>G |                   |           |                              |                             | 1                          |
| 104160959           | Exon 20                       | c.2094C>T    | p.Asn698Asn       | 11574851  | 4.50%                        | 3.70%                       | 1                          |
| 104161191           | Intron 20                     | c.2224-15C>T |                   |           | 0.23%                        | 0.03%                       | 1                          |
| 104161475           | Intron 21                     | c.2294-27A>C |                   | 11574852  | 3.50%                        | 2.30%                       | 1                          |
| 104161737           | Intron 22                     | c.2466+63C>T |                   |           |                              |                             | 1                          |
| 104161796           | Intron 22                     | c.2467-9T>A  |                   |           | 8.70%                        | 5.40%                       | 1                          |
| 104161895           | Exon 23                       | c.2557C>T    | p.Arg853*         |           |                              |                             | 1                          |
| 104162365           | 3′UTR                         | c.*232A>C    |                   | 41371753  | 5.50%                        |                             | 1                          |
| 104162682           | 3´UTR                         | c.*549G>A    |                   |           |                              |                             | 1                          |

**Table S5**. **Results of** *NFKB2* **Sequencing in Simplex CVID Affected Individuals.** The genomic position and gene position are shown along with the genotype. The protein change, if applicable, is also shown. RS numbers were obtained from the dbSNP database, and frequency information was obtained from the 1000 genomes and 5400 exomes databases. The number of times the allele was detected in the pool is listed. For example, a variant present in one allele corresponds to a heterozygous variant in one individual in the sample pool.

| VAAST Rank | Gene   | VAAST<br>p-value | VAAST Score |
|------------|--------|------------------|-------------|
| 1          | COL4A6 | 4.34E-09         | 43.56       |
| 2          | PNMA3  | 4.34E-09         | 43.56       |
| 3          | FAAH2  | 4.34E-09         | 43.56       |
| 4          | NFKB2  | 4.34E-09         | 41.98       |

**Table S6. VAAST analysis of Family A.** VAAST analysis<sup>1</sup> of genes containing variants from all affected individuals in Family A (P1, P2, and P3) not present in A.II.1 are shown along with VAAST rank, p-value, and VAAST score.

| VAAST Rank | Gene  | VarBin<br>Annotation | VAAST<br>p-value | VAAST<br>Score |
|------------|-------|----------------------|------------------|----------------|
| 1          | NFKB2 | True Variant         | 1.56E-11         | 55.75          |
| 2          | RP1L1 | False Positive       | 1.56E-11         | 52.14          |
| 3          | MUC4  | False Positive       | 1.56E-11         | 49.48          |

**Table S7. VAAST analysis of Family A and P4.** VAAST analysis<sup>1</sup> of genes containing variants from all affected individuals (P1, P2, P3, and P4) not present in A.II.1 are shown along with VAAST rank, p-value, and VAAST score. VarBin annotation (personal communication) of the variant as a False Positive or True Variant is shown.

| Peripheral lymphoid organs                                                                                                                                                                                                                               | T-cells                                    | <b>B-cells</b>                                                                   | Other                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Nfkb2 <sup>-/-</sup><br>no p100/p52<br>(Caamaño et al., 1998) <sup>2</sup><br>Spleen: disrupted architecture<br>Marginal zone: absent<br>Ly mph node: disrupted architecture<br>Germinal center: absent<br>Peyers patches: absent                        | αCD3, Con A:<br>↑IL-2<br>↑ splenic numbers | LPS, αCD40, αIgD:<br>↓ Proliferation<br>↓ Antigen-specific<br>antibodies         |                                                                                               |
| Nfkb2 Lym1 <sup>-/-</sup><br>Y868X; p52 deficiency<br>(Tucker et al., 2007) <sup>3</sup><br>Spleen: disrupted architecture, enlarged<br>Marginal zone: absent<br>Lymph node: disrupted architecture<br>Germinal center: absent<br>Peyers patches: absent | ↑CD4 and CD8 T cells                       | LPS, αCD40:<br>↓Proliferation<br>↓M ature peripheral B cells<br>↓Antibody levels | Inflammatory lung and<br>liver infiltrates.<br>Nfkb2 Lym1 -/+ with<br>intermediate phenotype. |

Table S8. Characteristics of Nfkb2 mouse models

| Individual | Gene | Chr | Position  | Variant | Zygosity | Classification | MAF   | Coding<br>Change | dbSNP rsID |
|------------|------|-----|-----------|---------|----------|----------------|-------|------------------|------------|
| P4         | LHX3 | 9   | 139092571 | C>T     | Het      | Synony mous    | 1.67% | c.123G>A         | 33998096   |
| P4         | LHX4 | 1   | 180235662 | C>T     | Het      | Synonymous     | 1.09% | c.384C>T         | 141139762  |

Table S9. Variants in genes associated with adrenal insufficiency in our cohort.

| Lym 1/1                                                                                                                                                                                                      | Lym1/Lym1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ~75-80% survival at 250 days (compared to ~90% in the wildtype)                                                                                                                                              | 0% survival at 250 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fertile                                                                                                                                                                                                      | Reduced fertility with less frequent litters and smaller litter size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Absence of peripheral LN<br>Mesenteric LN present but reduced in size<br>and cellularity<br>Absence of Peyer's patches                                                                                       | Absence of peripheral LN, mesenteric LN, as well as Peyer's patches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Intermediate disruption in spleen architecture compared to Lym1/Lym1 and wildtype                                                                                                                            | Disorganized spleen architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lung/liver inflammatory cell infiltrates with<br>smaller foci of inflammatory cell infiltrates<br>compared to Lym1/Lym1                                                                                      | Lung/liver inflammatory cell infiltrates<br>with extensive, large foci of T cells, B<br>cells and macrophages. Progressive<br>inflammation with age.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reduced osteoclast formation in response to<br>RANKL stimulation. Osteopetrosis via<br>histomorphometric measurements were<br>similar to Lym1/Lym1                                                           | Severely reduced (<0.5% compared to<br>wildtype) osteoclast generation after<br>RANKL stimulation. Presence of<br>osteopetrosis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cytoplasm: Very little p52 detected in lysates<br>from untreated or $\alpha$ CD40 stimulated splenic<br>B cells. No reduction or significant<br>accumulation in prescursor p100 levels after<br>stimulation. | Cytoplasm: Mutant p 100 protein<br>accumulated in the cytoplasm in response<br>to $\alpha$ CD40 stimulation. No p 52 detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nucleus: minor increases in p52 post stimulation.                                                                                                                                                            | Nucleus: no p52 observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                              | ~75-80% survival at 250 days (compared to<br>~90% in the wildtype)FertileAbsence of peripheral LN<br>Mesenteric LN present but reduced in size<br>and cellularity<br>Absence of Peyer's patchesIntermediate disruption in spleen architecture<br>compared to Lym1/Lym1 and wildtypeLung/liver inflammatory cell infiltrates with<br>smaller foci of inflammatory cell infiltrates<br>compared to Lym1/Lym1Reduced osteoclast formation in response to<br>RANKL stimulation. Osteopetrosis via<br>histomorphometric measurements were<br>similar to Lym1/Lym1Cytoplasm: Very little p52 detected in lysates<br>from untreated or αCD40 stimulated splenic<br>B cells. No reduction or significant<br>accumulation.Nucleus: minor increases in p52 post<br>stimulation. |

Table S10. Differences within the  $Nfkb2^{Lyml/+}$  and  $Nfkb2^{Lyml/Lyml}$  mouse models as described in Tucker et al.<sup>3</sup>

#### REFERENCES

- 1. Yandell, M., Huff, C., Hu, H., Singleton, M., Moore, B., Xing, J., Jorde, L.B., and Reese, M.G. (2011). A probabilistic disease-gene finder for personal genomes. Genome Res 21, 1529-1542.
- Caamano, J.H., Rizzo, C.A., Durham, S.K., Barton, D.S., Raventos-Suarez, C., Snapper, C.M., and Bravo, R. (1998). Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med 187, 185-196.
- Tucker, E., O'Donnell, K., Fuchsberger, M., Hilton, A.A., Metcalf, D., Greig, K., Sims, N.A., Quinn, J.M., Alexander, W.S., Hilton, D.J., et al. (2007). A novel mutation in the Nfkb2 gene generates an NF-kappa B2 "super repressor". J Immunol 179, 7514-7522.