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ABSTRACT Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion
(subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous
diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous
diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down
due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible
ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous
diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained
with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that
these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks
decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both
improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted
to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irrec-
oncilable behaviors when the area fraction of reduced mobility changes.
INTRODUCTION
The structural elements of living cells (e.g., membranes,
cytoplasm, nucleus, and mitochondria) exhibit disorder, het-
erogeneity, and obstruction typical of poorly connected me-
dia (1). For instance, cell membranes are heterogeneous
collections of contiguous spatial domains with various
length scales and timescales (e.g., fences, lipid rafts, and
caveolae) (2) that spatially modulate the diffusion of pro-
teins (3–5). This defines a spatially heterogeneous diffusion
problem with a position-dependent diffusion coefficient
(4,7–10). On the other hand, the movement of biomolecules
such as proteins in the membranes of living cells has consis-
tently been reported to exhibit anomalous diffusion,
whereby the mean-squared displacement (MSD) scales sub-
linearly with time, hr2ðtÞifta with a<1 (11–14). This
anomalous diffusion phenomenon (also coined subdiffu-
sion) is a hallmark of diffusion obstruction by obstacles
(15) or random walks with heavy-tailed residence time dis-
tributions (15,16) (for the sake of conciseness, we will not
consider here fractional Brownian motion (fBM) as a model
of crowding-induced anomalous diffusion (17)).

The influences of such deviations from simple Brownian
motion on the biochemical reactions that take place in these
media are just starting to be explored. The fundamentally
heterogeneous spatial organization of the cell membrane is
believed to locally favor the oligomerization of membrane
receptors and prolong their local residence times, thus
affecting signal transduction in the plasma membrane (5).
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However, careful investigations by Monte Carlo simulations
hint that complex or counterintuitive behaviors can generi-
cally be expected (18,19).

The effects of anomalous diffusion on the dynamics of
simple elementary reactions of biological interest have
recently attracted the interest of several groups (20–23)
(see Ben-Avraham and Havlin (24) for a book on elemen-
tary irreversible reactions). In the case of the binary reac-
tion AþB / products, for instance, anomalous diffusion
alters the overall reaction kinetics (25–27) and may favor
the search of target DNA sequences by transcription factors
in the nucleus (28,29) or reduce the time needed by an
enzyme to reach its substrate (30). Anomalous diffusion
has also been proposed as a key regulator of the spatiotem-
poral dynamics of Michaelis-Menten enzyme reactions
(EþS # C / E þ P) (31,32).

The case of reversible reactions, such as the ubiquitous
ligand-binding equilibrium,

Lþ R%
kon

koff
C (1)

(where L is the ligand, R its free receptor, and C the bound
complex), has received less attention. Reversible reactions
are expected to converge at long times to equilibrium,
thus permitting investigators to study the influence of anom-
alous or position-dependent diffusion not only on transient
regimes but also on long-time equilibrium properties.
Indeed, from standard mass-action laws (33), the concentra-
tion of complex C in reaction Eq. 1 evolves according to
dCðtÞ=dt ¼ konLðtÞRðtÞ � koffCðtÞ, where XðtÞ is the
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concentration of species X at time t. At equilibrium
ðdC=dt ¼ 0Þ, assuming that the total amount of Lmolecules,
LT, is much larger than that of R, RT, these mass-action laws
yield Ceq ¼ LTRT=ðKD þ LTÞ, where the equilibrium con-
stant KD ¼ kon=koff . This defines so-called dose-response
curves (the equilibrium amounts of C for increasing doses
of ligand) with equilibrium constant, KD, a measure of the
reaction affinity (the smaller the KD, the larger the affinity).

However, the significance of anomalous diffusion for
equilibrium properties is questionable because in many
experimental data (34–37), the anomalous regime is only
transient: at long times, the MSD crosses over to normal
(Brownian) diffusion, with a ¼ 1 but a reduced apparent
diffusion coefficient. Such transient behaviors are obtained,
e.g., when the density of obstructing obstacles is below the
percolation threshold (38–40) or the residence time is
power-law distributed with a cutoff (37,41). Fig. 1 A illus-
trates this transitory behavior with a Monte Carlo simulation
of two-dimensional (2D) random walks on a square lattice in
the presence of immobile obstacles (obstacle density
r ¼ 0:35). For very short simulation times, the distance trav-
eled by the molecules is less than the typical distance be-
tween obstacles, so the movement converges to a Brownian
motion without obstacles (with microscopic diffusion coeffi-
cientD0). The movement then crosses over to the anomalous
subdiffusive regime at longer times, with the MSD hR2ðtÞi
FIGURE 1 Transient anomalous diffusion as a transitory behavior in a macrosc

MSD, hR2ðtÞi (top) and the corresponding evolution of the ratio hR2ðtÞi=t (bott
drance (A) or power-law distributed residence times (CTRW) (B) are shown. T

SD. In the top panels, Brownian motion manifests as a straight line with unit s

lines). The anomalous regime is observed as a transient behavior, with slope az
macroscopic Brownian regime with diffusion coefficient DM. For panel A, one g

motion manifests as a horizontal straight line with the y-intercept set by the diffus

Parameters: Dt ¼ 1, Dx ¼ 2 and D0 ¼ 1, domain size w ¼ 106. Data are averag

exponent a ¼ 0:8, cutoff time tc ¼ 5� 104.
scaling sublinearly with time (roughly � t 0:8 in the figure).
However, the anomalous regime is transitory because at
longer times, the movement crosses over to a second Brow-
nian regime with a smaller apparent macroscopic diffusion
coefficient, DM. A similar behavior is observed when mole-
cule movements are due to a continuous-time random walk
(CTRW), in which the residence time t between two succes-
sive jumps has a power-law distribution (fðtÞft�ð1þaÞ with
0<a< 1) (15,16).When the residence time is upper-bounded
by a cutoff tc (Fig. 1B), the (ensemble-averaged)MSD scales
anomalously ðhR2ðtÞiftaÞ for t < tc and then crosses over to
a Brownian regime with reduced diffusion coefficient at
longer times. In both cases in Fig. 1, the transient anomalous
behavior transforms to a slowed-down Brownian motion at
long times. This asymptotic slowed-down Brownian regime
could be considered a macroscopic (homogenized) represen-
tation of the underlying microscopic anomalous diffusion.
Following this line of reasoning, it is tempting to assume
that the long-time (or equilibrium) behavior of a molecule
undergoing transient anomalous diffusion can be captured
by a slowed-down Brownian motion.

Here, we questioned the validity of this assumption, i.e.,
that slowed-down Brownian motion can capture transient
anomalous diffusion at long times. We studied the equilib-
rium properties of the ubiquitous ligand-binding equilibrium
(Eq. 1) when diffusion was transiently anomalous due to
opic slowed-down Brownian regime. Time evolutions (log-log scales) of the

om) during transient subdiffusive anomalous diffusion due to obstacle hin-

hick lines show the (ensemble) average, and the light swaths indicate þ1

lope and a y-intercept set by the diffusion coefficient (thin dashed orange

0:80 in (A) or a ¼ 0:80 in (B) (dotted lines), crossing over to an effective

ets DMz0:125, whereas DMz0:032 in B. In the bottom panels, Brownian

ion coefficient and the anomalous regimes as straight lines with slope 1� a.

es of 104 independent trajectories (A) obstacle density r ¼ 0:35, (B) CTRW
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either obstacles (below the percolation threshold) or power-
law-distributed residence times, or when normal space-
dependent Brownian diffusion took place. Using Monte
Carlo simulations and theoretical arguments, we show that
this approximation fails even for equilibrium properties, if
diffusion conditions are heterogeneous in space.
MATERIALS AND METHODS

Brownian motion

To simulate diffusion, we initially position L and R molecules uniformly at

random on a S ¼ w� w 2D square lattice with reflective boundaries. Each

lattice site ði; jÞ is associated with a diffusion coefficient Dði; jÞ (all mole-

cules here have identical diffusion coefficients). At each time step Dt, every

molecule is allowed to leave its current location ði; jÞ with jump probability

bði; jÞ ¼ 4Dt=ðDxÞ2Dði; jÞ, where Dx is the lattice spacing. The destination
site is chosen uniformly at random from the four nearest neighbors

ði51; j51Þ and the molecule jumps to it. To simulate spatially heteroge-

neous diffusion, we position the boundary of the slowed-down patch in

the middle of neighbor lattice sites. Each lattice side therefore belongs

either to the slowed-down patch (we thus set its diffusion constant to

Dði; jÞ ¼ D1) or to the outer region (and we set Dði; jÞ ¼ D0 >D1).

If the jump of the molecule to its destination site results in the formation

of an (L,R) couple on the same lattice site, a binding event may occur, i.e.,

the (L,R) couple may be replaced by a single C molecule at the site, with

probability pon. Finally, at each time step, every C molecule can unbind,

i.e., the C molecule is replaced by an (L,R) couple at the same site, with

probability poff.
Immobile obstacles

To simulate anomalous diffusion due to obstacles, we position obstacles at

random locations (with uniform distribution) at the beginning of the simu-

lation. The obstacles behave as a separate type of molecules that are kept

unreactive and immobile, whereas the other molecules (L, R, and C)

move as indicated above. Obstacles exclude the lattice site they occupy:

when the destination site of a moving L, R, or C molecule contains an

obstacle, the molecule is reflected back to its origin site (the destination

site becomes the origin position). Reaction is modeled as described above

for Brownian motion.
CTRW

Molecule motion by CTRW is modeled as for Brownian motion except that

upon each jump to its destination site, the molecule is attributed a new

residence time t sampled from the power-law distribution fðtÞ ¼
at�ð1þaÞ=ðDt�a � t�a

c Þ, forwhich R tc
Dt fðtÞdt ¼ 1. HenceDt, the simulation

time step, is the smallest residence time possible, and tc, the cutoff time, sets

its maximal value. Therefore, the next jump of this molecule will not take

place before t time units have elapsed. Reactions are modeled exactly as

for the Brownian case above, with the additional property that molecules

can react during residence (i.e., between jumps, whenever they are located

at the same location).Moreover, everynewmolecule resulting froma reaction

samples a new residence time. Becausemicroscopic details can have a crucial

effect on CTRW-based reactions (21,42,43), we checked in a subset of sim-

ulations that the latter does not impact qualitatively our simulation results.
Simulation parameters

In a typical simulation, we start with rð0Þ ¼ rT Rmolecules and lð0Þ ¼ lT L

molecules (where xT refers to the total number of molecules X), and no C,
Biophysical Journal 105(9) 2064–2073
and run the simulation until the density of bound receptors C reaches a

steady state, Ceq. We used standard parameter values throughout this study

unless otherwise specified, i.e., lattice size w ¼ 800, rT ¼ 100, Dt ¼ 1,

Dx ¼ 2, pon ¼ 0:1, poff ¼ 10�3 and diffusion coefficient D0 ¼ 1. The

ligand dose, lT , was varied to obtain dose-response curves. Data were aver-

aged over 20 independent simulations.

Depending on simulation conditions, equilibrium was typically reached

after at most 105 (obstacles) to 5� 105 (slowed-down Brownian diffusion)

time steps. The equilibrium value ofCeq was therefore computed as the time

average of CðtÞ for t˛½4:5; 5:0� � 105 (obstacles) or ½9:5; 10:0� � 105

(slowed-downBrownian).With CTRW, the time needed to establish equilib-

rium is much longer than the cutoff tc. In all of our simulations for tc%105,

we observed that equilibrium was reached before t ¼ 9:5� 105, so we used

the values for t˛½9:5; 10:0� � 105 to compute the equilibrium value.
RESULTS

Reaction in spatially homogeneous conditions

We first studied Eq. 1 in spatially homogeneous conditions,
i.e., in conditions where the diffusion coefficient or local
obstacle density is the same everywhere in space.

Fig. 2 A shows typical time courses of the bound fraction
CðtÞ=RT for different values of the diffusion coefficient D
(no obstacles). Although the time needed to reach equilib-
rium increases with smaller diffusion coefficients, all curves
seem to converge at long times to similar levels, thus sug-
gesting that the equilibrium concentration of bound receptor
Ceq does not depend on the diffusion coefficient. This is of
course an expected result from standard thermodynamics:
equilibrium configurations should in principle be indepen-
dent of dynamics, i.e., values of transport coefficients such
as diffusion coefficients. The situation is different when
the molecule movement exhibits transient anomalous diffu-
sion due to immobile obstacles randomly spread over the
whole lattice. At long times (Fig. 2 B), the reaction also con-
verges to equilibrium. In this case, though, the convergence
time to this equilibrium does not seem to be affected by the
density of hindering obstacles, but the concentration of
bound receptor at equilibrium seems to vary with the
obstacle density in a nontrivial fashion.

Fig. 3 A shows the dose-response curve for an obstacle
density r ¼ 0:35 (upper thick green line), for which mole-
cule motion exhibits the transient anomalous diffusive
behavior due to obstacles shown in Fig. 1 A (thick green
line). With immobile obstacles, the bound fraction for all
doses is found to be significantly larger than the dose-
response curve obtained in the absence of obstacles (solid
black circles). This confirms the observation of Fig. 2 B
that obstacle hindrance alters the bound fraction at equilib-
rium. Because the molecule movement for r ¼ 0:35 con-
verges at long times to Brownian diffusion with the
effective macroscopic diffusion coefficient DM ¼ 0:125
(Fig. 1 A), we compared these results with the dose-response
curve obtained when the molecules moved by a Brownian
motion (no obstacles) with diffusion coefficient D ¼ 0:125
(thick orange line). In agreement with the observation



FIGURE 2 Transient dynamics of reaction (Eq. 1) in homogeneous conditions, Dði; jÞhD; ci; j. The time evolution of the bound fraction CðtÞ=RT is

shown either (A) for values of D decreasing from 1.0 to 0.01 (from top to bottom, respectively; no obstacles), (B) for obstacle densities increasing from

0.0 to 0.40 (with microscopic diffusion coefficient D0 ¼ 1), (C) for CTRW motion with a ¼ 0:4 and cutoff time tc ¼ 102; 103; 104; 105 or 106 (from top

to bottom), or (D) for CTRWmotion with cutoff time tc ¼ 5� 104 and a ¼ 0:4; 0:5; 0:6; 0:7 or 0.8 (from bottom to top). Note that since the total simulation

time is 106 time steps, tc ¼ 106 corresponds to a CTRW with permanent anomalous regime (no crossover back to Brownian during the simulation). Total

ligand number lT ¼ 4500 and all other parameters were set according to the standard set (see Materials and Methods).

Anomalous versus Slowed-Down Diffusion at Equilibrium 2067
made above, and standard thermodynamics, the correspond-
ing dose-response curve was not significantly different from
the curve obtained with D ¼ 1 (solid black circles). This
confirms that the macroscopic slowed-down Brownian
regime reached at long times during transient anomalous
diffusion does not adequately account for the equilibrium
properties of Eq. 1.

The dose-response curves for anomalous diffusion due to
obstacles maintain a shape that is compatible with the clas-
sical dose-response equation ðCeq=RT ¼ LT=ðKD þ LTÞÞ.
Therefore, we can fit them using this equation and retrieve
for all obstacle densities the corresponding apparent equilib-
rium constant KD. Fig. 3 B displays KD values for several
values of the diffusion coefficient reduction g ¼ 1� D in
the absence of obstacles (B1) and for several obstacle den-
sities r (B2). As expected, even a one order of magnitude
span for D in the Brownian case does not influence the
apparent KD (B1).
The situation is different for transient anomalous diffu-
sion, though. Far from the percolation threshold
ðr ¼ 0:41Þ, KD decays linearly with obstacle density as
KD=KD0 ¼ 1� r. This is a simple effect of the excluded
volume occupied by the obstacles. Indeed, for a constant
number of molecules, the available space decreases when
the obstacle density increases. Consequently, the local den-
sity of molecules increases with the obstacle density. This
gives rise to the measured decrease of the apparent constant
KD. In agreement, the decay of KD far from the percolation
threshold disappears if the concentrations are computed on
the basis of the accessible space, 1� r, instead of the whole
space. Therefore, hindered diffusion due to obstacles not
only decreases molecule mobility but also increases the
affinity ð� 1=KDÞ of the reaction. This trend, however, re-
verses close to the percolation threshold, where KD in-
creases. This behavior is due to the competition between
two effects: with increasing obstacle densities, the mean
Biophysical Journal 105(9) 2064–2073



FIGURE 3 Equilibrium study of Eq. 1 in homogeneous conditions, Dði; jÞhD; ci; j. (A) The bound fraction at equilibrium, Ceq=RT as a function of the

relative ligand dose LT=KD0, where KD0 is the value of KD in the absence of obstacles and with reference diffusion coefficient D0 ¼ 1. (r, D) ¼ (0.0, D0)

(black, bars show5 1 SD), (0.0, 0.125) (orange, light swath shows -1 SD) or (0.35,1) (green, light swath shows þ1 SD). The bound fraction at equilibrium

for CTRW (with a ¼ 0:8 and tc ¼ 5� 104) is shown in blue (light blue swaths show 5 1 SD). From Student’s t-tests, the data points in the two Brownian

cases are not significantly different (at identical ligand dose), whereas the data points in the presence of obstacles or with CTRW are each significantly

different at all doses (except 0) from the Brownian cases (significance level p<0:01). (B) Relative apparent equilibrium constant KD=KD0 (B1) without

obstacles but increasing reduction of the diffusion, g ¼ 1� D, (B2) with D ¼ 1 but increasing obstacle density r, or (B3) for CTRW-based motion with

decreasing values of the anomalous exponent a (cutoff time tc ¼ 5� 104). The dashed line locates the diagonal y ¼ 1� x. Other parameters were set

according to the standard set (see Materials and Methods).
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first-collision time increases because the macroscopic diffu-
sion coefficient is slower (the first encounter between two
distant molecules takes increasingly longer). On the other
hand, the recollision time decreases because recollisions
imply that molecules are initially close by (as a consequence
of failed binding attempts or unbinding events), and anom-
alous diffusion favors recollisions (25,29). Close to the
percolation threshold, the increase of the first-collision
time overcompensates (by far) for the decrease of the recol-
lision time (not shown). As a result, the forward reaction
rate, kon, and the apparent affinity strongly decrease close
to the threshold.

When anomalous diffusion is due to CTRW, the kinetics
of the reaction shows a very different picture (Fig. 2, C and
D). For anomalous diffusion due to obstacles, the obstacle
density sets both the (apparent) scaling of the MSD with
time in the anomalous regime and the duration of this
regime. In the CTRW case, though, both quantities (the
anomalous exponent a and the crossover time tc) are param-
eters that we can fix separately. Similarly to obstacle-
induced anomalous diffusion, the convergence time is not
much affected by the value of the cutoff time (Fig. 2 C) or
that of the anomalous exponent (Fig. 2 D). However, the
concentration of bound receptors at equilibrium varies
widely with the CTRW parameters. In general, the equilib-
rium values obtained with CTRWare much lower than those
observed with Brownian motion and obstacle-induced
anomalous diffusion. This reduction of equilibrium binding
by CTRW progressively attenuates as the cutoff time decays
to very low values (Fig. 2 C) or the anomalous exponent in-
creases (Fig. 2 D), i.e., when diffusion is increasingly less
anomalous and the motion tends to Brownian. Note that
the largest cutoff used in this figure ðtc ¼ 106Þ equals the to-
Biophysical Journal 105(9) 2064–2073
tal simulation time, so that, in effect, tc ¼ 106 corresponds
to a permanent CTRW regime (no crossover back to the
Brownian regime within the simulation time). In this case,
equilibrium cannot be reached during the simulation time
(CTRW is then a nonequilibrium process).

This strong reduction of equilibrium binding with CTRW
is even more obvious in the dose-response curve in Fig. 3 A.
Note that the parameters for CTRW in this panel (blue
curve) are those illustrated in Fig. 1 B (thick blue line).
For a given ligand dose, the bound fraction at equilibrium
with CTRW is much smaller (up to ~2-fold) than the
response curve with Brownian motion, whatever the slow-
down (thick orange line). Here as well, since the overall
shape of the CTRW dose-response curves is compatible
with the classical form ðCeq=RT ¼ LT=ðKD þ LTÞÞ, they
can be fitted to estimate the apparent equilibrium constant
KD. Fig. 3 B3 shows that when diffusion becomes increas-
ingly anomalous (the anomalous exponent a decreases
from 1.0 downward), the equilibrium constant increases
up to very high values. Therefore, the ligand-binding reac-
tion at (long-time) equilibrium with CTRW-based or
obstacle-based transient anomalous diffusion appears to be
incompatible with slowed-down Brownian motion. Howev-
er, in contrast to obstacle-based anomalous diffusion,
CTRW-based anomalous diffusion strongly impairs the
bound fraction at equilibrium and, more generally, the affin-
ity of the ligand-binding equilibrium itself.
Space-dependent Brownian diffusion yields
accumulation at equilibrium

The results presented so far consider spatially homogeneous
conditions, i.e., Dði; jÞhD; ci; j. However, in living cells,



FIGURE 4 Brownian diffusion in heterogeneous (space-dependent) con-

ditions. Nonreactive molecules diffuse with coefficient D0 (no obstacles)

outside of a central patch in which diffusion is slowed down (the diffusion

coefficient inside the patch is D1 ¼ D0ð1� gÞ). (A) Characteristic time

required to reach equilibrium. (B) Molecule density at equilibrium in the

patch. Data are normalized by the values obtained in the absence of

slow-down, g ¼ 0. The solid line in A is a guide to the eyes, and the black

dashed line in B shows the theoretical prediction (Eq. 2). Bars indicate5 1

SD. Other parameters were set according to the standard set (see Materials

and Methods).
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the conditions are usually spatially heterogeneous: spatial
domains (e.g., lipid rafts and caveolae) give rise to posi-
tion-dependent values of D. In the experiments discussed
below, we addressed this situation by restricting the region
of space where diffusion is modified to a central square
patch of variable spatial extent. We simulated spatial
arrangements in which diffusion is Brownian with coeffi-
cient D0 outside the patch and reduced within the central
patch by imposing a reduced diffusion coefficient D1 inside
the patch.

Before addressing the ligand-binding equilibrium (Eq. 1)
in these conditions, we first investigate diffusion in the
absence of reaction. We use a central patch whose surface
area is 25% of the whole space and simulate the diffusion
of nonreactive molecules until they reach equilibrium.
Once equilibrium is reached, we perturb it by the addition
of supplemental nonreactive molecules in the center of the
patch, and measure the characteristic time it takes to reach
a new equilibrium and the concentration of molecules inside
the patch at this new equilibrium. Because reduced diffusion
in the patch slows down the molecules, the characteristic
time it takes to converge back to equilibrium increases
when diffusion is reduced in the patch (Fig. 4 A). More
intriguingly, when we measure the concentration of mole-
cules in the patch (relative to the exterior) at equilibrium,
we observe an increasing accumulation of molecules within
the patch when diffusion is slowed down therein (Fig. 4 B).
We emphasize here that these are equilibrium conditions.

Although it is surprising, this equilibrium effect can be
directly predicted in our system. A first intuitive approach
is obtained from the detailed balance condition. A condition
for our system to reach (thermodynamic) equilibrium it to
respect detailed balance. Consider two states, A and B, of
a Markov process. Note hA the probability to observe state
A and pðA/BÞ the transition probability from A to B,
the detailed balance condition reads hApðA/BÞ ¼
hBpðB/AÞ. Consider now two lattice sites, spatch and sout,
located on either side of the frontier separating the central
patch from the rest of the lattice. The detailed balance
in this case reads rðspatchÞ=rðsoutÞ ¼ pðsout/spatchÞ=
pðspatch/soutÞ, where rðxÞ is the concentration of mole-
cules at node x. To emulate position-dependent diffusion
(see Materials and Methods), our simulation algorithm
states that the jump probability between two lattice sites de-
pends exclusively on the diffusion coefficient at the node of
origin. The detailed balance thus becomes rðspatchÞ=
rðsoutÞ ¼ D0=D1>1 (where D0 and D1 are the diffusion co-
efficients outside and inside the patch, respectively). This
predicts accumulation inside the patch at equilibrium. A
more formal approach can be applied, based on the master
equation. This approach, detailed in the Supporting Materi-
al(section A), predicts that the total number of molecules at
equilibrium in the patch Ninside relates to the total number
Ntotal, the surface fraction of the patch f, the total surface
S, and the diffusion coefficient according to
Ninside ¼ SfNtotal

HðDÞ
D1

; HðDÞ ¼
�
f

D1

þ 1� f

D0

��1

(2)

We tested the theoretical prediction of Eq. 2 against our
Monte Carlo simulation results shown in Fig. 4 B. The
agreement between theoretical prediction (thick dashed
line) and simulation results (open diamonds) is very good.
This confirms that slowed-down Brownian motion in the
patch leads to a larger concentration inside the patch than
outside at equilibrium.

Note that our diffusion algorithm, in which the jump
probability depends only on the diffusion coefficient at the
node of origin, corresponds to solving the Brownian motion
with Ito’s stochastic calculus. Using Stratonovich’s rules
instead would preserve accumulation within the patch, but
Biophysical Journal 105(9) 2064–2073
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with reduced intensity (3,19). To determine which algorithm
is the correct one, one must know the microscopic quantities
that cause the observed change of diffusion coefficient at
macroscopic scales (3,44).
Reaction in spatially heterogeneous conditions

The accumulation phenomenon described above is likely to
modify the reaction in the spatially heterogeneous diffusion
case. Using several area fractions for the patch, we
computed the values of the apparent equilibrium constant
KD. With anomalous diffusion due to obstacles (Fig. 5 A),
the behavior reported in Fig. 3 B2 is roughly conserved
FIGURE 5 Equilibrium properties of reaction Eq. 1 in space-dependent condi

side the central patch, molecule motion is due to (A) transient anomalous diffusi

a ¼ 0:40 or (D) 0.60. (A–D) The panels show the apparent equilibrium constant

obstacle density r (A), the amount of diffusion reduction in the patch, g ¼ 1

log10ðKD=KD0Þ). The inset in B shows the value of f that yields maximal affini

line). Other parameters were set according to the standard set (see Materials an
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for all patch area fractions f: KD decreases linearly with
the obstacle density r far from the percolation threshold
and then increases back close to it. The amplitude of this
decay increases with the patch area (as the total space occu-
pied by obstacles increases). Considering the behavior
observed in spatially homogeneous conditions (Fig. 3 B2),
one would expect that far from the percolation threshold,
KD ¼ KD0ð1� fÞ þ KD0ð1� rÞf, yielding KD=KD0 ¼
1� rf. Indeed, we found that the latter is a very good
approximation for the simulation results of Fig. 5 A. Close
to the percolation threshold, the apparent affinity reverses
and starts to decrease because of the strong increase of the
first-collision time (see above).
tions. Molecules move with Brownian motion outside the central patch. In-

on due to obstacles, (B) slowed-down Brownian motion or CTRW with (C)

KD=KD0 as a function of the area fraction occupied by the patch f and the

� D1=D0 (B), or the cutoff time tc (C and D; note that C and D show

ty (solid circles) and the corresponding theoretical prediction (Eq. 3, solid

d Methods).



Anomalous versus Slowed-Down Diffusion at Equilibrium 2071
The situation is quite different for space-dependent Brow-
nian diffusion (Fig. 5 B). Whatever the patch area, we also
observe that KD decreases, but in this case, this is the result
of the accumulation phenomenon reported above (Fig. 4 B).
Moreover, in this case, KD exhibits a nonmonotonous depen-
dency with respect to the area fraction f, with a marked
minimum. Hence, for a given value of diffusion reduction
in the patch, g ¼ 1� D1=D0, our Monte Carlo simulations
show that there exists an optimal value of the patch surface
area that yields the highest affinity (Fig. 5 B, inset). Using
Eq. 2 above for both R and L, we can estimate this optimal
value analytically. Our theoretical analysis, given in the
Supporting Material (section B), indeed shows the existence
of an optimal surface area f+ that maximizes the apparent
reaction affinity. When the size of the space domain
S[ðlTD0Þ=ðD1KDÞ (which is always valid in the simula-
tions shown in this work, given S ¼ 8002), f+ is predicted
to depend on g according to

f+z
1� g

2� g
(3)

In the limit of large slowdowns g/1, Eq. 3 gives f+/0:

the larger the slowdown, the smaller the optimal patch area.
This prediction is in general qualitative agreement with the
simulation results of Fig. 5 B, which do not depend in a
monotonous way on g and f, but present extrema along
the f-axis that shift leftward with increasing g. In the limit
of no-slowdown g/0, Eq. 3 predicts f+ ¼ 0:5, but then, in
this case, the apparent affinity does not depend on f

anymore (see the Supporting Material, section B), and
thus no extrema are observed. For a quantitative test of
Eq. 3, we plotted the relationship between g and the value
of f that exhibited the smallest KD in our simulations
(Fig. 5 B, inset, open circles). These values were found to
align nicely with the prediction of Eq. 3 (inset, solid line),
thus validating this prediction quantitatively.

Finally Fig. 5, C andD, show the behavior exhibited when
anomalous diffusion is due to a CTRW with cutoff time. In
agreement with Fig. 3, we note that for almost all of the pa-
rameters in these figures, the reaction affinity is massively
impaired by CTRW, up to four to six orders of magnitude
(note that these curves plot the log of the relative affinity con-
stant). Even for rather short cutoffs (e.g., tc ¼ 103 time
steps), the apparent affinity of the ligand-binding equilib-
rium is lower with CTRW than with Brownian motion as
soon as the patch in which CTRW occurs is wider than
one-fourth of the total area. For some parameters, the affinity
of the reaction can be larger than Brownian motion. Howev-
er, this corresponds to very small cutoff times that produce
anomalous regimes of very limited duration. In these cases,
the CTRW in the patch tends to exhibit Brownian motion
with a reduced diffusion coefficient, and thus the system
tends to resemble the space-dependent Brownian case illus-
trated in Fig. 5 B. On the other hand, CTRW is also found to
increase the apparent affinity for large cutoff times, but only
for small to very small patch area fractions. The biological
relevance of these restricted cases is therefore not obvious.
Therefore, except for very small patch areas, CTRW-based
anomalous diffusion massively impairs the affinity of the
ligand-binding equilibrium.

To conclude, we have shown that heterogeneous slowed-
down Brownian systems provide an advantage in terms of
patchiness: the minimal value of KD is obtained when the
patch occupies a subset of the available space. This is in
strong contrast to the equilibrium behavior obtained with
transient anomalous diffusion, where the affinity increases
or decreases monotonously with the patch area fraction de-
pending on the microscopic origin of the anomalous
behavior (obstacles or CTRW, respectively).
DISCUSSION

This study was motivated by the concept that, in contrast to
the celebrated fluid mosaic model (45), the cellular plasma
membrane is not a simple 2D liquid that can be made
spatially homogeneous by the rapid lateral diffusion of
lipids and proteins. Recent progress in time-lapse imaging
(including at the single-molecule scale) has enabled re-
searchers to obtain evidence for the existence of spatial in-
homogeneities that form dynamical hierarchical domains at
the mesoscale (e.g., fence-picket compartments, raft
domains, and protein complex domains) (5). The impact
of this organization in hierarchical domains on the signaling
reactions that take place on the membrane is still poorly un-
derstood. The alteration of the diffusive movements of the
proteins in these hierarchical domains may be very impor-
tant for signaling (18). However, it is not yet entirely clear
exactly which parameters of the diffusive movements are
modified in which domains. One could think of modulations
of the diffusion coefficient (4,7–10) or the confinement
distance (46), or a local change from Brownian to non-
Brownian diffusion (anomalous diffusion) due to macromo-
lecular crowding or obstacle hindrance (12,47–49). Whether
these different scenarios have different effects on biochem-
ical reactions on the membrane is not known.

In this work, we focused on a comparison of three
possible scenarios: Brownian diffusion with reduced diffu-
sion coefficient (slowed-down Brownian) and transient
anomalous diffusion due to immobile obstacles or power-
distributed residence times (CTRW). Indeed, since transient
anomalous diffusion converges at long times to a slowed-
down Brownian movement, one may be led to consider
slowed-down Brownian motion as equivalent to transient
anomalous diffusion at equilibrium. In contrast, we have
shown here that this assumption fails when diffusion condi-
tions are spatially heterogeneous, since the equilibrium
behavior of the three scenarios we contemplated are mark-
edly distinct. When it is due to obstacles, transient anoma-
lous diffusion increases the apparent binding affinity, with
Biophysical Journal 105(9) 2064–2073
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a maximal effect when the obstacles are spread all over the
available space. However, when it is based on a CTRW, tran-
sient anomalous diffusion strongly decreases the apparent
binding affinity. Slowed-down Brownian motion has a
very different effect because it increases the apparent affin-
ity in a nonmonotonous way: maximal affinity is reached
when the region of reduced diffusion coefficient is restricted
to a subdomain of the membrane surface. Therefore,
slowed-down Brownian motion in the ligand-binding reac-
tion does not capture the effect of transient anomalous diffu-
sion even at the long times necessary to reach equilibrium.

A main result from our study is that CTRWand hindrance
by immobile obstacles lead to very different behaviors at
equilibrium even though they yield comparable anomalous
scaling of the MSD. This result is in line with the realization
that the two processes are fundamentally distinct. For
instance, CTRW presents a weak ergodicity breaking (the
scaling with time of the time-averaged MSD differs from
that of ensemble-averaged MSD) (37,50) that is not
observed with obstacle-based anomalous diffusion. The
scaling with time or initial distance of several observables
derived from first-passage-time statistics differs notably be-
tween the two processes (51). Whether the distinct equilib-
rium behaviors disclosed in our study are related to these
differences is currently unknown, but will be investigated
in future works. Paradoxically, however, these two processes
need not be mutually exclusive and may coexist. For
instance, it was recently suggested that the motion of ion
channels on the cytoplasmic membrane would be consistent
with a CTRW that is restricted to take place on a fractal (14).
Because hindrance by randomly located immobile obstacles
restricts the walker movement to such a fractal geometry (at
least close to the percolation threshold) (38), such a phe-
nomenon could in principle be studied in our simulations.
However, adding the slowdown of the reaction due to obsta-
cles to that due to CTRW may be problematic in terms of
simulation times and demand alternative simulation or
modeling frameworks.

Recent evidence suggests that fBM (and the associated
fractional Langevin equation) is a third possible source of
anomalous diffusion, in addition to obstacle hindering and
CTRW. fBM is a generalization of classical Brownian mo-
tion, where the random increments between two successive
locations are not independent (as in Brownian motion) but
present long-range temporal correlations (17). Like CTRW
and hindering by immobile obstacles, fBM gives rise to
anomalous diffusion but no weak ergodicity breaking.
Most notably, fBM could play an important role in the diffu-
sion of lipids in membranes and be a major source of anom-
alous diffusion therein (52–54). Note, however, that fBM
has also been proposed to describe the long-time regime
in the transport of lipid granules in Schizosaccharomyces
pombe (37). Although the impact of fBM on (bio)chemical
reactions and on membrane signaling in particular has not
yet been thoroughly studied (but see Hellmann et al. (32)),
Biophysical Journal 105(9) 2064–2073
it may become an important topic if the role of fBM in lipid
movements in membranes is confirmed.

Our results for slowed-down Brownian motion suggest
that when the membrane is partitioned into two regions
only (i.e., the patch, in which diffusion is slowed down,
and the rest of the lattice), a surface area for the patch exists
that optimizes the apparent reaction affinity. However, this
is a very simplified configuration, since there may be several
disconnected (slowed-down) patches coexisting in the mem-
brane. It is unknown whether in this case a (total) optimal
surface area would still exist or what (if any) type of spatial
configuration of the patches would be optimal. In terms of
combinatorics, a numerical study of this problem by Monte
Carlo simulations would be very challenging because the
number of configurations for a given total patch surface
area is very large, but it could reveal some very interesting
properties for space-dependent Brownian diffusion.

The functional implications of our findings may be
important for our understanding of the organization of cell
membranes and, more generally, cell spaces. For instance,
it is interesting to note that in living cell membranes,
slowed-down regions (e.g., rafts) show a very patchy distri-
bution, whereas bulky obstacles seem less systematically
clustered in limited regions. Therefore, by controlling the
spatial extent of areas with reduced lateral diffusion, cells
may be able to control the apparent affinity of the ubiquitous
ligand-reaction binding events.
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A. Space-dependent Brownian diffusion yields accumulation at
equilibrium

Let us consider the 1d case for simplicity, and a constant-by-part dependence of the
diffusion coefficient D(x) = D1, ∀x ∈ [a, b] and D(x) = D0 outside the patch [a, b]. Let
us then consider a single molecule and let π(x, t) its probability to be located at position
x at time t :

π(x, t+ ∆t) = q(x)π(x, t) + π(x−∆x, t) (1− q(x−∆x)) /2

+π(x+ ∆x, t) (1− q(x+ ∆x)) /2 (SI.1)

where q(x) is the probability not to jump at each time step and is defined, using the
jump probability β(x) = 2∆t/(∆x)2D(x) (see Methods), as q(x) = 1 − β(x). Noting
g(x, t) = (1 − q(x))π(x, t)/2 and developing g(x ± ∆x, t) in series of x, one obtains at
order 2

π(x, t+ ∆t) = q(x)π(x, t) + 2g(x) + (∆x)2∂xxg(x)

= π(x, t) + (∆x)2∂xxg(x, t) (SI.2)

Dividing by ∆t and taking the limit ∆t→ 0, one gets

∂tπ(x, t) = ∂xx (D(x)π(x, t)) (SI.3)

where we used the expression of β(x) above to define D(x). Noting u(x,∞) the density
of molecules at x at equilibrium, one expects from eq. (SI.3)

D(x)u(x,∞) = H(D) (SI.4)

where H(D) is the spatial harmonic mean of the (space-dependent) diffusion function

H(D) =

[∫
D−1(x)dx

]−1

(SI.5)

Now, using the constant-by-part function for D(x) expressed above, this yields u(x,∞) =
H(D)/D1 ∀x ∈ [a, b] and u(x,∞) = H(D)/D0 outside. The equilibrium concentration
inside the [a, b] patch thus equals that found outside the patch multiplied by D0/D1.
Hence the larger the slowdown of the Brownian motion inside the patch, the larger the
accumulation inside it at equilibrium, explaining the simulation results of Fig.4B. In the
present 2d case, the total number of molecules in the patch Ninside relates to total number
Ntotal, the surface fraction of the patch φ, the total surface S and the diffusion coefficient
according to :

Ninside = SφNtotal
H(D)

D1

, H(D) =

[
φ

D1

+
1− φ
D0

]−1

(SI.6)
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B. Optimum area for spatially restricted slowed-down Brownian
motion

Let us consider a space domain of total area S = w × w, in which molecules move by
Brownian motion with diffusion coefficient D(x) = D1 inside the central patch (of surface
φS) and D(x) = D0 in the outer region around this central patch (surface (1− φ)S). We
denote numbers of molecules by lower-case letters to distinguish them from concentrations
(denoted by capital letters) : x thus expresses the number of X molecules in the domain.
Moreover, just like for the diffusion coefficient above, we use indices for each variable to
indicate location, i.e. x1 refers to the number of X molecules within the central patch while
x0 refers to its value outside the patch. Finally, in the following, all results will relate to
equilibrium values, so that we drop the “eq” notation used above for readability.

Our major assumption in the following theoretical analysis is to consider that the
reaction proceeds separately in each zone (inside or outside of the patch), independently of
each other. Our goal then becomes to determine the value of φ that maximizes c0+c1 = cT ,
the total number of complexes. According to our space separation assumption, one has in
each zone i = {0, 1} :

Ci =
Ri,TLi,T
KDi + Li,T

(SI.7)

where Ri,T = Ri + Ci and Li,T = Li + Ci. In terms of molecule numbers, this translates
into

c0 =
r0,T l0,T

KD0(1− φ)S + l0,T
and c1 =

r1,T l1,T
KD1φS + l1,T

(SI.8)

Now, according to eq. (7) (main text), the relative amount of reactants in each zone
is given by

ρ(x) =
H(D)

D(x)
(SI.9)

with H the (2D) spatial harmonic mean of the diffusion constant D

H(D) =

[∫∫
S

D−1(x)dx

]−1

=

[
S
φ

D1

+ S
(1− φ)

D0

]−1

(SI.10)

The amount of reactant outside the central patch thus reads

r0,T = rT

∫
(1−φ)S

ρ(u)du =

∫∫
(1−φ)S

H(D)

D(u)
du

so that
r0,T =

rT (1− φ)SH(D)

D0

(SI.11)

Likewise, inside the patch :

r1,T = rT

∫
φS

ρ(u)du =

∫∫
φS

H(D)

D(u)
du

yielding

r1,T =
rTφSH(D)

D1

(SI.12)

Note that
(1− φ)SH(D)/D0 + φSH(D)/D1 = 1
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and the above results stands for li,T (i = {0, 1}) as well.
Therefore, noting

α = (1− φ)SH(D)/D0 (SI.13)

and
1− α = φSH(D)/D1 (SI.14)

we obtain

cT = c0 + c1 = rT lT

(
α2

KD0(1− φ)S + αlT
+

(1− α)2

KD1φS + (1− α)lT

)
(SI.15)

In particular, in homogeneous conditions (D0 = D1 and KD0 = KD1), one has H(D) =
D0/S and α = 1 − φ so that eq.(SI.15) reduces to cT = rT lT/(KD0S + lT ) ∀φ, i.e.
precisely the classical dose-response curve for homogeneous conditions. Note that except
for homogeneous conditions, eq.(SI.15) does not generally display the classical parabolic
shape, typical of the homogenous conditions (y = cx/(d+ x)).

Now, the assumption of space separation between the two zones means that the mo-
vement is homogeneous (position-independent) Brownian motion for each zone. In this
case we have found on Figure 3B1 (main text) that KD1 ≈ KD0 for all values of D1 tested
(D0 = 1). We thus set KD0 = KD1 ≡ KD in the following. To find the extremum of
eq.(SI.15), we search for the solutions of dcT/dφ = 0 and get :

φ? =
S + ad−

√
d(S + ad)(a+ Sd)

S(1− d2)
(SI.16)

where we noted d ≡ D0/D1 and a ≡ lT/KD. We remark that in this expression, the
value of the optimum area φ∗ depends on the dose, i.e. the total concentration of ligand
LT = L+R. This is related to the fact that eq.(SI.15) generally has not a typical parabolic
shape. However, eq.(SI.16) greatly simplifies when S � ad (which is always valid in the
simulations shown in the present article, given S = 8002), to a very simple expression

φ? ≈ 1− γ
2− γ

, S � ad (SI.17)

with γ = 1 − D1/D0. It is remarkable that, in this limit, φ? does not depend on the
dose a anymore, which in fact relates to the fact that the expression for cT (eq.(SI.15)) in
this case adopts a classical parabolic shape.

Taken together, this simple theoretical analysis predicts the existence of an optimal
surface area φ? for the affinity, that depends on the value of D1 relative to D0. In the
limit of large slowdowns γ → 1, eq.(SI.17) gives φ? → 0 : the larger the slowdown, the
smaller the optimal patch area. This prediction is in general qualitative agreement with
the simulation results of Figure5B that do not depend in a monotonous way on γ and φ
but presents extrema along the φ-axis that shift leftward with increasing γ. In the limit
of no-slowdown γ → 0, eq.(SI.17) predicts φ? = 0.5 but then, in this case, the value of
cT does not depend on φ anymore (see above for D0 = D1), so that no extremum are
observed.
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