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Brief description of the evaluated algorithms: TScratch [1] is freely available 

software that uses fast discrete curvelet transform [2] to segment and measure the area 

occupied by cells in an image. The curvelet transform extracts gradient information in 

several scales, orientations and positions in a given image, and encodes it as curvelet 

coefficients. TScratch selects two scale levels to fit the gradient details found in cells 

contours, and combines the two scale levels to generate a curvelet magnitude image, 

which incorporates the details of the original image in the selected scales. 

Morphological operators are further applied to refine the curvelet magnitude image. 

As a final step, an automatic threshold is applied to partition the curvelet magnitude 

image into occupied and free regions. This approach was first applied for edge 

detection in microscopy images [3]. TScratch can be used via a GUI or by applying 

the source code which are available together with a detailed user manual at 

http://www.cse-lab.ethz.ch/index.php?&option=com_content&view=article&id=363. This is 

by far the most developed software of the three options, featuring a convenient user 

interface, the ability to set several parameters and compatibility with most platforms.  

 Topman et al. [4] used standard deviation of pixel intensities as a measure for 

texture. It is calculated across two different scales for every given image, producing 

an image of texture homogeneities for each scale. A threshold based on the smaller 

scale is automatically defined, as half the highest local maximum of pixel intensities 

in the histogram of the texture image. This threshold is applied to segment the texture 

images of both scales. The final segmentation is calculated as the intersection of these 

two segmented masks followed by morphological operators. Source code is available 

in [4]. 

MultiCellSeg [5] is a freely software available that applies machine-learning based 

classification to local patches within an image. Basic image features are used to 

represent each patch which is fed to a designated pre-train support vector machine [6] 

(using LIBSVM implementation [7]). Post processing includes additional 

classification of larger connected components and graph-cut segmentation to 

reclassify erroneous regions and refine the segmentation. A basic GUI and the source 

code are available at http://www.cs.tau.ac.il/~assafzar/. A main feature is that 

MultiCellSeg requires no parameter tuning as the classifiers are computed based on 

the training images. However, this is the slowest of the three algorithms presented 

here. 

Parameter tuning: RGB images were converted to gray level images by the built-in 

Matlab function rgb2gray for all algorithms. The set of parameters used for each 

algorithm were set once and then used to compare the algorithms’ performance across 

all 8 datasets. MultiCellSeg is parameter-free so no parameters were set. The default 

set of parameters was used to evaluate TScratch. The algorithm by Topman et al. [4] 

was evaluated using scales of 9 and 25 pixels to fit the values reported in the paper; 

small changes of these values had minor effect on the algorithm’s performance. 

Additional attention was given to the thresholding method as described below. 

http://www.cse-lab.ethz.ch/index.php?&option=com_content&view=article&id=363
http://www.cs.tau.ac.il/~assafzar/
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Extensive evaluation of Topman’s thresholding: While examining Topman’s 

algorithm, we discovered that the automatic threshold extraction method performed 

inferiorly compared to a constant threshold. Thus, we evaluated the performance of 

different values for this parameter. The best performance for 6 of the 8 datasets was 

achieved at a threshold value of 0.03. These results are summarized in Additional file 

6: Table S3. Next, we tried to set the threshold parameter based on the training 

images. The threshold value was selected to optimize the average F-measure of the 

images in the training set, then applied to the test datasets. The performance was 

similar to the results obtained before, see Table 1 for details. 

Assessing the baseline variance in annotation: A second expert annotated a partial 

set of arbitrary images from 7 out of the 8 datasets (excluding Scatter, which has only 

6 images). To assess the baseline variance created by different human annotations we 

used the average F-measure to compare between the second annotation and the 

official ground truth annotation, in the same manner as used when comparing the 

different algorithms. Four datasets (“Init”, “SN15”, “HEK293”, and “MDCK”) 

achieved an agreement F-measure of 0.98 or higher, TScratch had a median F-

measure of 0.95. To retain a better confidence on the remaining two high-variance 

datasets, a second annotation was performed on all images in these sets. “Melanoma” 

median F-measure was 0.93 while “Microfluidics” was 0.81. Indeed, the performance 

of all algorithms on “Microfluidics” was significantly inferior compared with the 

other datasets (Table 1). Example visualizations of the agreements and inconsistencies 

between the two annotations on images from the less-consistent datasets are presented 

in Additional file 5: Figure S2, we conclude that datasets of scattered cells have 

higher baseline variance since F-measure is sensitive to inconsistent annotations at 

cell borders (The pros for using F-measure are its simplicity and sensitivity; when the 

score is high – annotations are definitely very similar). Additional file 4: Table S2 

summarizes all baseline variance results. The second annotation is also provided as 

part of the benchmark. 
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