
The MCMC method for correcting correlations for right- and left-censoring

Data such as A-level grades and GCSE grades are strongly right-censored in medical students, many

having marks at the ceiling level of AAA for their three best grades. The MCMC algorithm can be used

to calculate the mean, standard deviation and the correlation of the true, underlying (latent)

distribution.

The method is best demonstrated by synthesising some data with known parameters, censoring it,

and then retrieving the true parameters from the censored data. For simplicity the example has a large

sample size (10,000), and parameters which are broadly typical of A-level grades. For the two

variables, X (horizontally) and Y (vertically) the true means are 30 and 30, the true standard deviations

are 3 and 3, and the true correlation is 0.5. Random numbers are grouped into five categories

corresponding to scores of 30, 28, 26, 24 and 22 or less on each variable, giving the contingency table

shown below.

Score 22 or less 24 26 28 30 Total

22 or less 14 18 31 20 14 97

24 20 52 111 104 83 370

26 30 97 235 336 424 1122

28 20 110 321 603 1079 2133

30 14 93 398 1052 4721 6278

Total 98 370 1096 2115 6321 10000

The simple means of the X and Y variables are 28.83 and 28.84, both of which are lower than the

correct values of 30 and 30, and the simple SDs are 1.79 and 1.79, both of which are substantially less

than the true values of 3 and 3. The empirical correlation of .390 is also less than the true correlation

of 0.5.

The MCMC algorithm begins at a starting point (in fact the empirical means, SDs and correlation

described in the previous paragraph) and assuming that the distribution is bivariate normal calculates

the expected numbers of individuals in each of the cells. As examples, for a cell such as X=24 and Y=28

it uses the mvncdf function in Matlab to calculate p, the expected proportion of a bivariate normal

distribution from X=25 to 27 and Y= 27 to 29. The actual frequency of observations in that cell, f, which

in fact is 110 in the example, is then used to calculates the log.likelihood of the observed f individuals

in the cell, which is 2.f.log(p). The likelihood is calculated separately for each cell, cells on the margins

having ranges which include Infinity or –Infinity (e.g. for X=22 or less and Y=30 the probability is

calculated on the basis of X=-Inf to 23 and Y=29 to +Inf). For the starting values, the summed

log.likelihood is 43,662. The MCMC algorithm then alters the various parameters and searches for

values which give a lower log-likelihood (and the likelihood for the actual values from which the data

were generated is 39,806).

The algorithm is both Monte Carlo and Markov Chain. The Monte Carlo part involves generating

estimates of the parameters which are randomly altered at each step of the chain. The Markov Chain

part refers to the fact that at step n+1 the new estimates of the parameters are based on those at step

n (but not at any previous step). If the log.likelihood is better than at the previous step then the new

position is accepted with a fixed probability which is less than one. The result is that the parameters



move through the parameter space, both converging on the best estimates and also particularly

sampling the space around those best estimates, eventually ending up in a ‘well’, which centres

around the best fitting values. The parameter space in the current example is actually five

dimensional, and figure 1 shows the estimate of each of the parameters at each step in the chain,

which is 5000 steps long. Over the first 500 or so links the estimates vary, but after that they become

stable, showing random variation around some average point. In the jargon of MCMC, they have

become ergodically stable. There are five parameters and therefore it is not possible easily to visualise

their joint relationship but figure 2 shows a plot of the values of the mean and standard deviation of X

at each of the 5000 steps. The points are coloured in ‘jet’ colours so that the dark blue point in the

lower left-hand corner, indicated with a red arrow, is the starting point and the ‘hot’ red and yellow

colours are at the end of the chain, at the top right. Although the initial points are far removed from

the final one, convergence rapidly occurs with estimates localised around 30 for the mean and 3 for

the SD.

MCMC allows a straightforward calculation of the standard error and 95% confidence intervals of the

various estimates. Considering just the last 2000 steps of the chain, the average estimate of the X

mean is 29.96. The standard deviation of the 2000 estimates of X is 0.054, and that can be regarded as

an estimate of the standard error of X. The 95 percent confidence intervals can also be calculated by

ranking the 2000 estimates, and looking at those at the 2.5th and 97.5th percentiles, which are 29.87

and 30.06. Importantly that interval includes the true value of 30. Similar calculations for the other

four parameters gives 95% confidence intervals of 29.94 to 30.13 for the Y mean, 2.89 to 3.05 for X

SDF, 2.92 to 3.08 for Y SD, and .473 to .509 for the correlation, all of which include the true value.

If one looks carefully at figure 2 the large ‘blob’ in the top right-hand corner is not quite circular but is

elliptical. That indicates that there is a correlation between the estimates of the mean and SD, and the

across the last 2000 steps of the chain the correlation is .399. Parameter estimates often correlate.

Essentially what happens in this case is that if the mean is relatively high (say 32), then a reasonable fit

can be obtained by also setting the SD higher as well, since all of the fitting process is occurring in the

tail of the distribution. Were there only to be two categories (say 28 or less and 30), then it would no

longer be possible to estimate both the mean and SD, any value of the mean having an appropriate

estimate of the SD which would fit the data perfectly. There would be two parameters but only one

degree of freedom, and the correlation between the estimates would necessarily be one.

In this particular case the estimates of the means, SDs and correlation of the decensored distribution

are remarkably close to the values in the true distribution from which the numbers were generated,

giving faith in the MCMC process in general. Of course the estimates are very good in part because

N=10,000, when, for instance the standard error of X mean was .054 and the 95% confidence for the

correlation was .473 to .509. If the process is repeated with N=1000, sampling from the same true

distribution, then although the average estimate of X mean is 2.91, its standard error is now .148 (and

the estimate of the correlation is .446 with 95% confidence intervals of .371 to .520). And if N=100,

then although the average estimate of X mean is 29.79, its standard error is now .426 (and the average

estimate of the correlation of .568 has 95% confidence intervals of .328 to .738). Standard errors in

general are inversely proportional to the square of N, as can be seen by comparing .054 for N=10,000

with .426 for N=100, which are roughly in a ratio of 10:1 (i.e. the square root of 10,000/100). The

accuracy of estimates depends therefore on the number of data points in the sample, and not the

number of elements in the chain.



Figure 1: Plots of the estimated values of the means and SDs of the X and Y values,
and their correlations, at each of the 5000 points in the chain. Estimates of the values
and their standard errors was based on the last two thousands steps in the chain
(indicated by the red box), where the estimates are clearly stable.
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Figure 2: Plots of the estimated values of X mean and X SD at each of the 5000 points
in the chain. The red arrow indicates the starting point (at the empirical mean and SD),
the red dashed lines the true X mean and X SD from which the data were sampled.
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