Supplementary Information for

The Selective Transfer of Patterned Graphene:

Xu-Dong Chen¹, Zhi-Bo Liu^{1,*}, Wen-Shuai Jiang¹, Xiao-Qing Yan^{1,2}, Fei Xing¹, and

Yongsheng Chen², Jian-Guo Tian^{1,*}

¹ The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied

Physics School and School of Physics, Nankai University, Tianjin 300457, China

² The Key Laboratory of Functional Polymer Materials and Center for Nanoscale Science &

Technology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin

300071, China

*email: rainingstar@nankai.edu.cn, jjtian@nankai.edu.cn

Figure S1| AFM images of few-layer grapheme flakes transferred to flat SiO₂/Si wafers using the selective transfer technique (a-c) before and (d-f) after annealing. The scale bar is 10 μ m.

Figure S2| The Raman spectra of the monolayer graphene transferred selectively to a chosen microcavity. **a**, Graphene surrounded the microcavity and **b**, graphene above the microcavity.

Figure S3 | Optical images of different graphene patterns with different thickness transferred to (a-g) Si/SiO₂ wafers, (h) quartz, and (i) PET film.

Figure S4| The Raman spectrum of the monolayer graphene on Au electrodes. The graphene was transferred onto Au electrodes using the selective transfer technique to fabricate MG-based FET.

Figure S5 | SEM image of the graphene FET fabricated by depositing Au electrodes on graphene. The graphene was contaminated during the fabrication process.

Figure S6| The current as a function of the voltage for the four devices measured during the bending tests.