Supporting Information

Implementing Fluorescence Anisotropy Screening and Crystallographic Analysis to Define PKA Isoform-Selective Activation by cAMP Analogs

Simon H.J. Brown^{1,5}, Cecilia Y. Cheng¹, S. Adrian Saldanha¹, Jian Wu¹, Howard B Cottam³, Banumathi Sankaran⁴, and Susan S. Taylor^{1,2}

¹Department of Chemistry and Biochemistry, ²Department of Pharmacology and Howard Hughes Medical Institute, ³Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037–0654, ⁴Lawrence Berkeley National Lab, Advanced Light Source, Berkeley, CA 94720, and ⁵School of Health Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.

e-mail: staylor@ucsd.edu. Telephone: (858) 534-3677. Fax: (858) 534-8193.

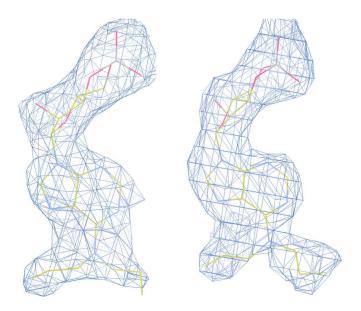


Figure S1. Electron Density of HE33 in RII β -HE33 crystal structures. The $2F_o$ - F_C map is rendered at 1σ . Domain A is shown on the left and domain B is shown on the right.