Sphenostylisins A-K: Bioactive Modified Isoflavonoid Constituents of

the Root Bark of Sphenostylis marginata ssp. erecta

Jie Li, [†] Li Pan, [†] Ye Deng, [†] Ulyana Muñoz-Acuña, ^{†,‡} Chunhua Yuan, [§] Hongshan Lai, [†] Heebyung Chai, [†] Tangai E.
Chagwedera, ^{\perp} Norman R. Farnsworth, ^{\parallel, ∇} Esperanza J. Carcache de Blanco, ^{†,‡} Chenglong Li, [†] Djaja D.
Soejarto, $^{\parallel,\circ}$ and A. Douglas Kinghorn ^{*,†}
[†] Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 W.
12th Ave., Columbus, OH 43210, United States
[‡] Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, 500 W.
12th Ave., Columbus, OH 43210, United States
[§] Nuclear Magnetic Resonance Facility, Campus Chemical Instrument Center, The Ohio State University,
Columbus, OH 43210, United States
¹ Department of Pharmacy, University of Zimbabwe, Harare, Zimbabwe
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at
Chicago, Chicago, IL 60612, United States
^v Deceased September 11, 2011
[°] Field Museum of Natural History, Chicago, IL 60605, United States
*Corresponding Author. Tel: 1-(614) 247-8094. Fax: 1-(614) 247-8119. E-mail: kinghorn.4@osu.edu

Contents:

Index:	Page
Table S1. 1D and 2D NMR Spectroscopic Data of Compounds 1–3.	4
Table S2. 1D and 2D NMR Spectroscopic Data of Compounds 4–7.	5
Table S3. 1D and 2D NMR Spectroscopic Data of Compounds 8.	6
Table S4. 1D and 2D NMR Spectroscopic Data of Compounds 9–11.	7
Scheme S1. A Plausible Biogenetic Pathway of the New Compounds 1–11.	8
Figure S1a. ¹ H NMR spectrum of compound 1 (DMSO- d_6 , 800 MHz).	9
Figure S1b. 13 C NMR spectrum of compound 1 (DMSO- d_6 , 150 MHz).	9
Figure S1c. ¹³ C DEPT 135 NMR spectrum of compound 1 (DMSO- d_6 , 100 MHz).	10
Figure S1d. HSQC spectrum of compound 1 (DMSO- d_6 , 400 MHz).	10
Figure S1e. HMBC spectrum of compound 1 (DMSO- <i>d</i> ₆ , 800 MHz).	11
Figure S1f. Expanded HMBC spectrum of compound 1 (DMSO- d_6 , 800 MHz).	11
Figure S1g. ¹ H- ¹ H COSY spectrum of compound 1 (DMSO- d_6 , 400 MHz).	12
Figure S2a. ¹ H NMR spectrum of compound 2 (DMSO- d_6 , 800 MHz).	12
Figure S2b. ¹³ C NMR spectrum of compound 2 (DMSO- d_6 , 150 MHz).	13
Figure S2c. ¹³ C DEPT 135 NMR spectrum of compound 2 (DMSO- d_6 , 100 MHz).	13
Figure S2d. HSQC spectrum of compound 2 (DMSO- d_6 , 400 MHz).	14
Figure S2e. HMBC spectrum of compound 2 (DMSO- <i>d</i> ₆ , 800 MHz).	14
Figure S2f. Expanded HMBC spectrum of compound 2 (DMSO- d_6 , 800 MHz).	15
Figure S2g. Expanded HMBC spectrum of compound 2 (DMSO- d_6 , 800 MHz).	15
Figure S2h. 1 H- 1 H COSY spectrum of compound 2 (DMSO- d_{6} , 400 MHz).	16
Figure S3a. ¹ H NMR spectrum of compound 3 (DMSO- d_6 , 800 MHz).	16
Figure S3b. Expanded ¹ H NMR spectrum of compound 3 (DMSO- d_6 , 800 MHz).	17

Figure S3c. ¹³ C NMR spectrum of compound 3 (DMSO- d_6 , 150 MHz).	17
Figure S3d. ¹³ C DEPT 135 NMR spectrum of compound 3 (DMSO- d_6 , 100 MHz).	18
Figure S3e. HSQC spectrum of compound 3 (DMSO- <i>d</i> ₆ , 400 MHz).	18
Figure S3f. HMBC spectrum of compound 3 (DMSO- <i>d</i> ₆ , 800 MHz).	19
Figure S3g. Expanded HMBC spectrum of compound 3 (DMSO- d_6 , 800 MHz).	19
Figure S3h. ¹ H- ¹ H COSY spectrum of compound 3 (DMSO- d_6 , 400 MHz)	20
Figure S3i. NOESY spectrum of compound 3 (DMSO- d_6 , 400 MHz).	20
Figure S4a. ¹ H NMR spectrum of compound 4 (DMSO- <i>d</i> ₆ , 400 MHz).	21
Figure S4b. ¹³ C NMR spectrum of compound 4 (DMSO- d_6 , 100 MHz).	21
Figure S4c. ¹³ C DEPT 135 NMR spectrum of compound 4 (DMSO- d_6 , 100 MHz).	22
Figure S4d. HSQC spectrum of compound 4 (DMSO- <i>d</i> ₆ , 400 MHz).	22
Figure S4e. HMBC spectrum of compound 4 (DMSO- d_6 , 400 MHz).	23
Figure S4f. 1 H- 1 H COSY spectrum of compound 4 (DMSO- d_{6} , 400 MHz).	23
Figure S5a. ¹ H NMR spectrum of compound 5 (CD ₃ OD, 400 MHz).	24
Figure S5b. ¹³ C NMR spectrum of compound 5 (CD ₃ OD, 100 MHz).	24
Figure S5c. ¹³ C DEPT 135 NMR spectrum of compound 5 (CD ₃ OD, 100 MHz).	25
Figure S5d. HSQC spectrum of compound 5 (CD ₃ OD, 400 MHz).	25
Figure S5e. HMBC spectrum of compound 5 (CD ₃ OD, 400 MHz).	26
Figure S5f. ¹ H- ¹ H COSY spectrum of compound 5 (CD ₃ OD, 400 MHz).	26
Figure S6a. ¹ H NMR spectrum of compound 6 (CD ₃ OD, 400 MHz).	27
Figure S6b. ¹³ C NMR spectrum of compound 6 (CD ₃ OD, 100 MHz).	27
Figure S6c. ¹³ C DEPT 135 NMR spectrum of compound 6 (CD ₃ OD, 100 MHz).	28
Figure S6d. HSQC spectrum of compound 6 (CD ₃ OD, 400 MHz).	28
Figure S6e. HMBC spectrum of compound 6 (CD ₃ OD, 400 MHz).	29
Figure S6f. ¹ H- ¹ H COSY spectrum of compound 6 (CD ₃ OD, 400 MHz).	29
Figure S7a. ¹ H NMR spectrum of compound 7 (DMSO- d_6 , 400 MHz).	30
Figure S7b. ¹³ C NMR spectrum of compound 7 (DMSO- d_6 , 100 MHz).	30
Figure S7c. ¹³ C DEPT 135 NMR spectrum of compound 7 (DMSO- d_6 , 100 MHz).	31
Figure S7d. HSQC spectrum of compound 7 (DMSO- <i>d</i> ₆ , 400 MHz).	31
Figure S7e. HMBC spectrum of compound 7 (DMSO- d_6 , 400 MHz).	32
Figure S7f. 1 H- 1 H COSY spectrum of compound 7 (DMSO- d_{6} , 400 MHz).	32
Figure S8a. ¹ H NMR spectrum of compound 8 (CD ₃ OD, 400 MHz).	33
Figure S8b. 13 C NMR spectrum of compound 8 (CD ₃ OD, 100 MHz).	33
Figure S8c. ¹³ C DEPT 135 NMR spectrum of compound 8 (CD ₃ OD, 100 MHz).	34
Figure S8d. HSQC spectrum of compound 8 (CD ₃ OD, 400 MHz).	34
Figure S8e. HMBC spectrum of compound 8 (CD ₃ OD, 400 MHz).	35
Figure S8f. ¹ H- ¹ H COSY spectrum of compound 8 (CD ₃ OD, 400 MHz).	35
Figure S9a. ¹ H NMR spectrum of compound 9 (DMSO- d_6 , 400 MHz).	36
Figure S9b. ¹³ C NMR spectrum of compound 9 (DMSO- d_6 , 100 MHz).	36
Figure S9c. ¹³ C DEPT 135 NMR spectrum of compound 9 (DMSO- d_6 , 100 MHz).	37
Figure S9d. HSQC spectrum of compound 9 (DMSO- d_6 , 400 MHz).	37
Figure S9e. HMBC spectrum of compound 9 (DMSO- d_6 , 400 MHz).	38
Figure S9f. 1 H- 1 H COSY spectrum of compound 9 (DMSO- d_{6} , 400 MHz).	38
Figure S10a. ¹ H NMR spectrum of compound 10 (DMSO- d_6 , 400 MHz).	39
Figure S10b. ¹³ C NMR spectrum of compound 10 (DMSO- d_6 , 100 MHz).	39
Figure S10c. ¹³ C DEPT 135 NMR spectrum of compound 10 (DMSO- d_6 , 100 MHz).	40

Figure S10d. HSQC spectrum of compound 10 (DMSO- d_6 , 400 MHz).	40
Figure S10e. HMBC spectrum of compound 10 (DMSO- d_6 , 400 MHz).	41
Figure S10f. ¹ H- ¹ H COSY spectrum of compound 10 (DMSO- d_6 , 400 MHz).	41
Figure S11a. ¹ H NMR spectrum of compound 11 (DMSO- d_6 , 400 MHz).	42
Figure S11b. ¹³ C NMR spectrum of compound 11 (DMSO- d_6 , 100 MHz).	42
Figure S11c. ¹³ C DEPT 135 NMR spectrum of compound 11 (DMSO- d_6 , 100 MHz).	43
Figure S11d. HSQC spectrum of compound 11 (DMSO- d_6 , 400 MHz).	43
Figure S11e. HMBC spectrum of compound 11 (DMSO- <i>d</i> ₆ , 400 MHz).	44
Figure S11f. ¹ H- ¹ H COSY spectrum of compound 11 (DMSO- d_6 , 400 MHz).	44
Figure S12a. ¹ H NMR spectrum of the reaction solution of Scheme 1 (CD ₃ OD, 400 MHz).	45
Figure S12b. HPLC separation chromatogram of the reaction solution of Scheme 1	
along with UV spectrum of peaks 2 and 3.	46
Figure S13a, b. HRESIMS of compounds 1 and 2.	47
Figure S13c, d. HRESIMS of compounds 3 and 4.	48
Figure S13e, f. HRESIMS of compounds 5 and 6.	49
Figure S13g, h. HRESIMS of compounds 7 and 8.	50
Figure S13i, j. HRESIMS of compounds 9 and 10.	51
Figure S13k. HRESIMS of compounds 11.	52
Figure S131. ESIMS/MS of compound 1.	53
Figure S13m. ESIMS/MS of compound 2.	54
Figure S13n. ESIMS/MS of compound 3.	55
Figure S14. Proposed ESIMS/MS fragmentation pathway of compound 3.	55
Figure S15. UV and ECD spectra of compound 3.	56
Protocol S1. Evaluation of hydroxyl radical-scavenging activity.	56
Protocol S2. Evaluation of quinone reductase-inducing activity.	57
Protocol S3. Evaluation of NF-κB inhibition activity.	57
Protocol S4. Evaluation of cytotoxicity.	58

	1				2				3			
lio.	$\delta_{ m H}{}^b$	$\delta_{ m C}{}^c$	COSY	$HMBC^{d}$	$\delta_{ m H}{}^{b}$	${\delta_{ m C}}^c$	COSY	$HMBC^{d}$	$\delta_{ m H}{}^b$	$\delta_{ m C}{}^c$	COSY	$HMBC^{d}$
2α		159.9				160.1			3.77, t (9.7)	69.2	2β, 3	3, 4, 8a, 1'
2β									4.09, br d, (9.7)		2α, 3	3, 4, 8a, 1'
3		120.4				121.4			3.25, m	31.4	2α,β, 4α,β	2, 1', 2', 6'
4α	7.73, s	142.2		2, 4a, 5, 8a, 1'	7.56, s	141.8		2, 4a, 5, 8a, 1'	2.87, dd (15.1, 11.7)	29.7	4β, 3	2, 3, 4a, 5, 8a,
4β									2.64, dd (15.1, 3.5)		4α, 3	2, 3, 4a, 5, 8a,
4a		111.1				111.0				111.6		
5	7.46, s	126.6		4, 7, 8a, 9	7.37, s	126.4		4, 7, 8a, 9	6.81, s	127.7		4, 7, 8a, 9
6		131.6				131.5				126.1		
7		159.3				159.3				154.5		
OH-7	10.53, s			6-8					9.07, s			6-8
8	6.77, s	102.4		4a, 6, 7, 8a	6.68, s	102.2		4a, 6, 7, 8a	6.24, s	103.4		4a, 6, 7, 8a
8a		153.1				153.0				152.6		
9		39.9				39.8				39.5		
10	6.26, dd (17.5, 10.7)	147.1	11a,b	6, 9, 12, 13	6.21, dd (17.5, 10.7)	147.1	11a,b	6, 9, 12, 13	6.24, dd (17.5, 10.7)	148.0	11a,b	6, 9, 12, 13
11a	4.97, br d (10.7)	110.6	10	6, 9, 10, 12, 13	4.93, br d (10.7)	110.5	10	9, 10	4.92, br d (17.5)	109.6	10	6, 9, 10, 12,
11b	4.95, br d (17.5)		10	6, 9, 10, 12, 13	4.91, br d (17.5)		10	9, 10	4.90, br d (10.7)		10	6, 9, 10, 12,
12	1.48, s	26.9		6, 9-11, 13	1.43, s	26.9		6, 9, 10, 13	1.40, s	26.9		6, 9-11, 13
13	1.48, s	26.9		6, 9-12	1.43, s	26.9		6, 9, 10, 12	1.40, s	26.9		6, 9-12
1′		114.6				113.7				118.6		
2'		157.8				153.9				157.8		
OH-2'	9.85, s			1'-3'					9.89, s			1'-3'
3'	6.35, s	102.8		1', 2', 4', 5'	6.41, s	103.9		1', 2', 4', 5'	6.32, s	102.6		1', 2', 4', 5'
4'		155.9				155.5				154.7		
OH-4′	10.04, s			3'-5'					9.75, s			3'-5'
5'		108.4				116.8				108.3		
6'	7.52, s	131.7		3, 2', 4', 2"	6.67, s	131.4		3, 2', 4', 8"	7.23, s	128.1		3, 2', 4', 2"
2″		152.2				149.3				153.0		
3″		114.0				114.7				113.7		
3″a		120.1				121.9				120.1		
4″	7.33, d (8.4)	120.6	5″	3", 6", 7", 7"a	7.19, d (8.4)	119.8	5″	3", 6", 7"a	7.38, d (8.4)	120.4	5″	3", 6", 7", 7"a
5″	6.78, dd (8.4, 1.6)	112.7	4″, 7″	3"a, 4", 6", 7"	6.60, dd (8.4, 1.8)	111.0	4", 7"	3"a, 4", 6", 7"	6.77, dd (8.4, 1.6)	112.6	4", 7"	3"a, 4", 6", 7"
6″		155.8				154.8				155.7		
OH-6"	9.67, s			5''-7''					9.65, s			5''-7''
7″	6.98, d (1.6)	97.4	5″	3"a, 5", 6", 7"a	6.80, d (1.8)	97.3	5″	3"a, 5", 6", 7"a	6.97, d (1.6)	97.4	5″	3"a, 5", 6",
7‴a		154.2				154.7				154.2		
8″		194.7			3.71, s	22.6		4'-6', 2", 3", 3"a		194.6		
9″		112.9				108.1				112.8		
10"		162.5				154.6				162.4		
OH-10"	12.66, s			9"-11"					12.64, s			9"-11"
11″	6.34, s	103.2		8"-10", 12", 13"	6.44, s	102.4		9", 10", 12", 13"	6.29, s	103.1		8"-10", 12",
12"		163.2				157.2				163.0		
OH-12"	10.54, s			11"-13"					10.47, s			11''-13''
13″		125.8				124.7				125.6		
14″	7.32, s	131.4		8", 10", 12", 15"	7.01, s	129.5		2", 10", 12", 15"	7.21, s	131.1		8", 10", 12",
15″		39.2				39.4				39.0		
16″	5.84, dd (17.5, 10.7)	147.2	17″a,b	13", 15", 18", 19"	6.10, dd (17.5, 10.7)	147.9	17″a,b	13", 15", 18", 19"	5.78, dd (17.5, 10.7)	147.2	17″a,b	13", 15", 18",
17″a	4.74, br d (10.7)	110.2	16″	15", 18", 19"	4.78, br d (17.5)	109.6	16″	15", 16"	4.73, br d (10.7)	110.0	16″	15", 16", 18",
17″b	4.67, br d (17.5)		16″	15", 16", 18", 19"	4.75, br d (10.7)		16″	15", 16"	4.61, br d (17.5)		16″	15", 16", 18",
18″	1.09, s	26.6		13", 15"-17", 19"	1.27, s	26.7		13", 15", 16", 19"	1.04, s	26.7		13", 15"-17",
19″	1.09, s	26.6		13", 15"-18"	1.27, s	26.7		13", 15", 16", 18"	1.04, s	26.7		13", 15"-18"

Table S1. 1D and 2D NMR Spectroscopic Data of Compounds 1–3^{*a*}.

^{*a*} NMR data obtained in DMSO- d_6 . Assignments are based on ¹H–¹H COSY, HSQC, and HMBC spectroscopic data. ^{*b*} Measured at 800 MHz for ¹H NMR; δ in ppm, mult. (*J* in Hz). ^{*c*} Measured at 150 MHz for ¹³C NMR; δ in ppm. ^{*d*} HMBC correlations are presented from proton to indicated carbons.

	4			•	5		•		6				7			
no	$\delta_{ m H}{}^b$	$\delta_{ m C}{}^c$	COSY	HMBC^d	${\delta_{ m H}}^b$	${\delta_{ m C}}^c$	COSY	HMBC^d	${\delta_{ m H}}^b$	${\delta_{ m C}}^c$	COSY	HMBC^d	${\delta_{ m H}}^b$	${\delta_{ m C}}^c$	COSY	HMBC^d
2		160.3				163.7				164.0				160.3		
3		121.0				122.9				122.9				120.9		
4	7.80, s	142.1		2, 5, 8a, 1'	7.87, s	144.2		2, 5, 8a, 1'	7.79, s	144.1		2, 5, 8a, 1'	7.80, s	142.2		2, 5, 8a, 1'
4a		111.2				115.3				113.7				111.3		
5	7.45, s	126.4		4, 7, 8a, 9	7.38, s	122.6		4, 7, 8a, 9	7.33, s	132.7		4, 7, 8a, 12	7.45, s	128.3		4, 7, 8a, 9
6		131.6				137.2				124.4				129.1		
7		159.1				162.8				161.4				159.2		
8	6.74, s	102.3		4a, 6, 7, 8a	6.76, s	98.4		4a, 6, 7, 8a	6.75, s	103.4		4a, 6, 7, 8a	6.72, s	102.3		4a, 6, 7, 8a
8a		153.0				156.0				155.2				153.0		
9		39.9				43.7				75.3				46.1		
10	6.23, dd (17.5, 10.7)	147.1	11a,b	6, 9, 12, 13	4.45, dd (6.3, 5.3)	95.6	11a,b	6, 7, 9, 11-13	6.01, dd (17.3, 10.8)	146.0	11a,b	9, 12, 13	6.26, dd (17.6, 10.8)	144.1	11a,b	6, 9, 12, 13
11a	4.95, dd (10.7, 1.2)	110.5	10	9, 10	3.86, br d (5.3)	61.9	10	9, 10	5.20, dd (17.3, 1.2)	112.2	10	9, 10	5.02, dd (10.8, 1.1)	112.5	10	9
11b	4.93, dd (17.5, 1.2)		10	9, 10	3.85, br d (6.3)		10	9, 10	5.00, dd (10.8, 1.2)		10	9	4.92, dd (17.6, 1.1)		10	9, 10
12a	1.45, s	26.9		6, 9, 10, 13	1.44, s	28.2		6, 9, 10, 13	2.92, d (13.9)	43.6	12b	5-7, 9, 10	3.79, d (10.3)	67.1	12b	6, 9, 10, 13
12b									2.87, d (13.9)		12a	5-7, 9, 13	3.72, d (10.3)		12a	6, 9, 10, 13
13	1.45, s	26.9		6, 9, 10, 12	1.25, s	23.2		6, 9, 10, 12	1.26, s	27.0		9, 10, 12	1.41, s	21.8		6, 9, 10, 12
1'		113.8				115.4				115.6				113.7		
2'		156.0				157.4				157.4				156.0		
3'	6.35, d (2.2)	102.6	5'	1', 2', 4', 5'	6.38, d (2.3)	104.0	5'	1', 2', 4', 5'	6.38, d (2.3)	104.0	5'	1', 2', 4', 5'	6.35, d (2.2)	102.6	5'	1', 2', 4', 5'
4'		158.3				160.0				160.0				158.3		
5'	6.26, dd (8.3, 2.2)	106.2	3', 6'	1', 3', 4', 6'	6.35, dd (8.2, 2.3)	107.9	3', 6'	1', 3', 4', 6'	6.35, dd (8.2, 2.3)	107.9	3', 6'	1', 3', 4'	6.25, dd (8.3, 2.2)	106.2	3', 6'	1', 3', 4'
6′	7.03, d (8.3)	131.5	5'	3, 2', 4'	7.12, d (8.2)	132.7	5'	3, 2', 4'	7.11, d (8.2)	132.7	5'	3, 2', 4'	7.02, d (8.3)	131.5	5	3, 2', 4'

Table S2. 1D and 2D NMR Spectroscopic Data of Compounds $4-7^a$.

^{*a*} NMR data obtained in DMSO- d_6 for 4 and 7, and in CD₃OD for 5 and 6. Assignments are based on ¹H–¹H COSY, HSQC, and HMBC spectroscopic data.

^b Measured at 400 MHz for ¹H NMR; δ in ppm, mult. (*J* in Hz).

^{*c*} Measured at 100 MHz for ¹³C NMR; δ in ppm.

^d HMBC correlations are presented from proton to indicated carbons.

	8											
по	${\delta_{ m H}}^b$	$\delta_{ m C}{}^c$	COSY	HMBC^d								
2	8.10, s	156.3		3, 4, 8a, 1'								
3		124.1										
4		179.2										
4a		117.0										
5	8.13, s	127.4		4, 7, 8a, 9								
6		133.3										
7		164.1										
8	6.86, s	104.0		4, 4a, 6, 7, 8a								
8a		158.5										
9		48.0										
10	6.33, dd (17.4, 10.6)	144.6	11a,b	6, 9, 12, 13								
11a	5.14, br d (10.6)	113.8	10	9								
11b	5.04, br d (17.4)		10	9, 10								
12a	4.03, d (10.7)	69.3	12b	6, 9, 10, 13								
12b	3.89, d (10.7)		12a	6, 9, 10, 13								
13	1.53, s	22.4		6, 9, 10, 12								
1'		112.3										
2'		158.0										
3'	6.40, d (2.2)	104.7	5'	1', 2', 4', 5'								
4'		160.2										
5'	6.38, dd (8.2, 2.2)	108.3	3', 6'	1', 3', 4'								
6'	7.05, d (8.2)	132.9	5'	3, 2', 4'								

 Table S3. 1D and 2D NMR Spectroscopic Data of Compound 8^a.

^{*a*} NMR data obtained in CD₃OD. Assignments are based on ¹H–¹H COSY, HSQC, and HMBC spectroscopic data. ^{*b*} Measured at 400 MHz for ¹H NMR; δ in ppm, mult. (*J* in Hz). ^{*c*} Measured at 100 MHz for ¹³C NMR; δ in ppm.

^d HMBC correlations are presented from proton to indicated carbons

	9		-		10				11					
no	$\delta_{ m H}{}^b$	${\delta_{\mathrm{C}}}^c$	COSY	HMBC^d	${\delta_{ m H}}^b$	${\delta_{ m C}}^c$	COSY	HMBC^d	${\delta_{ m H}}^b$	${\delta_{ m C}}^c$	COSY	HMBC^{d}		
1		112.3				112.2				112.2				
2		164.4				164.5				164.5				
3	6.24, d (2.3)	102.4	5	1, 2, 4, 5	6.23, d (2.3)	102.4	5	1, 2, 4, 5	6.19, d (2.3)	102.4	5	1, 2, 4, 5		
4		164.7				164.6				164.8				
5	6.38, dd (8.8, 2.3)	108.0	3, 6	1, 3, 4	6.34, dd (8.9, 2.3)	108.0	3, 6	1, 3, 4	6.32, dd (8.9, 2.3)	108.1	3, 6	1, 3, 4		
6	7.94, d (8.8)	133.1	5	2, 4, 7	7.89, d (8.9)	133.2	5	2, 4, 7	7.91, d (8.9)	133.2	5	2, 4, 7		
7		202.9				203.2				203.1				
8a	4.11, d (16.3)	38.7	8b	7, 1', 2', 6'	4.01, d (15.7)	38.4	8b	7, 1', 2', 6'	3.99, br s	38.5		7, 1', 2', 6'		
8b	4.03, d (16.3)		8a	7, 1', 2', 6'	3.96, d (15.7)		8a	7, 1', 2', 6'						
1'		113.4				111.9				111.3				
2'		154.8				153.9				153.9				
3'	6.23, s	96.8		1', 2', 4', 5'	6.30, s	102.7		1', 2', 4', 5'	6.29, s	103.5		1', 2', 4', 5'		
4'		157.5				155.2				155.2				
5'		127.6				114.9				121.6				
6′	6.83, s	124.2		8, 2', 4', 7'	6.73, s	134.2		8, 2', 4', 7'	6.83, s	130.5		8, 2', 4', 7'		
7′		42.1			2.57, s	42.1		4'-6', 8', 9', 11'		45.6				
8'	4.16, dd (6.7, 5.2)	92.8	9′	9'-11'		73.5			6.20, dd (17.6, 10.6)	145.0	9′a,b	5', 7', 10', 11'		
9′a	3.65, m	60.0	8'	7'	5.89, dd (17.3, 10.7)	146.0	10'a,b	8'	4.96, br d (10.6)	111.7	8'	7', 8'		
9′b									4.89, br d (17.6)		8'	7', 8'		
10'a	1.27, s	27.2		5', 7', 8', 11'	5.08, dd (17.3, 1.9)	110.7	9′, 10′b	8', 9'	3.67, d (10.5)	67.6	10′b	5', 7', 8', 11'		
10′b					4.87, dd (10.7, 1.9)		9′, 10′a	8'	3.65, d (10.5)		10'a	5', 7', 8', 11'		
11′	1.02, s	23.2		5', 7', 8', 10'	1.07, s	26.4		7'-9'	1.29, s	21.4		5', 7', 8', 10'		

Table S4. 1D and 2D NMR Spectroscopic Data of Compounds 9–11^{*a*}.

 $\overline{}^{a}$ NMR data obtained in DMSO- d_{6} for 9-11. Assignments are based on $^{1}H-^{1}H$ COSY, HSQC, and HMBC spectroscopic data.

^{*b*} Measured at 400 MHz for ¹H NMR; δ in ppm, mult. (*J* in Hz). ^{*c*} Measured at 100 MHz for ¹³C NMR; δ in ppm.

^d HMBC correlations are presented from proton to indicated carbons.

Scheme S1. A Plausible Biogenetic Pathway of the New Compounds 1–11.

Figure S1a. ¹H NMR spectrum of compound 1.

Figure S1c. ¹³C DEPT 135 NMR spectrum of compound 1.

Figure S1e. HMBC spectrum of compound 1.

Figure S1f. Expanded HMBC spectrum of compound **1** showing the correlation of H-6['] (δ 7.52) to C-2^{''} (δ 152.2).

Figure S1g. ¹H-¹H COSY spectrum of compound **1**.

Figure S2b. ¹³C NMR spectrum of compound 2.

Figure S2c. ¹³C DEPT 135 NMR spectrum of compound 2.

Figure S2d. HSQC spectrum of compound 2.

Figure S2e. HMBC spectrum of compound 2.

Figure S2f. Expanded HMBC spectrum of compound **2** showing the correlation of H-14["] (δ 7.01) to C-2["] (δ 149.3).

Figure S2g. Expanded HMBC spectrum of compound **2** showing the correlation of H-8["] (δ 3.71) to C-4['] (δ 155.5), C-5['] (δ 116.8), C-6['] (δ 131.4), C-2["] (δ 149.3), C-3["] (δ 114.7), and C-3["] a (δ 121.9).

Figure S3b. Expanded ¹H NMR spectrum of the dihydropyran ring of compound **3**, showing the coupling constants to determine the orientation of H-3 as axial and the 3-phenyl group as equatorial.

Figure S3d. ¹³C DEPT 135 NMR spectrum of compound 3.

Figure S3f. HMBC spectrum of compound 3.

Figure S3g. Expanded HMBC spectrum of compound **3** showing the correlation of H-6['] (δ 7.23) to C-2^{''} (δ 153.0).

5.0

-

3.5

3.0

2.5

2.0

1.5

4.5 4.0 f2 (ppm) (mqq) 11

4

1.0

6 03 60 9

Ł

۲

7.5

7.0

6.5

6.0

5.5

Figure S4a. ¹H NMR spectrum of compound 4.

Figure S4c. ¹³C DEPT 135 NMR spectrum of compound 4.

5.5

7.5 7.0 6.5 6.0

8.5 8.0

5.0 4.5 f2 (ppm) 4.0

3.5 3.0

2.5 2.0

1.5 1.0

0.5

Figure S4e. HMBC spectrum of compound 4.

Figure S4f. ¹H-¹H COSY spectrum of compound **4**.

Figure S5a. ¹H NMR spectrum of compound 5.

Figure S5b. ¹³C NMR spectrum of compound 5.

9.0 8.5 8.0

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm)

Figure S5e. HMBC spectrum of compound 5.

Figure S5f. ¹H-¹H COSY spectrum of compound 5.

Figure S6a. ¹H NMR spectrum of compound 6.

Figure S6c. ¹³C DEPT 135 NMR spectrum of compound 6.

Figure S6d. HSQC spectrum of compound 6.

Figure S6e. HMBC spectrum of compound 6.

Figure S6f. ¹H-¹H COSY spectrum of compound **6**.

Figure S7a. ¹H NMR spectrum of compound 7.

Figure S7b. ¹³C NMR spectrum of compound 7.

Figure S7c. ¹³C DEPT 135 NMR spectrum of compound 7.

Figure S7e. HMBC spectrum of compound 7.

Figure S7f. ¹H-¹H COSY spectrum of compound **7**.

Page 32 of 58

Figure S8a. ¹H NMR spectrum of compound 8.

-5000

Figure S8c. ¹³C DEPT 135 NMR spectrum of compound 8.

Figure S8d. HSQC spectrum of compound 8.

Figure S8e. HMBC spectrum of compound 8.

Figure S8f. ¹H-¹H COSY spectrum of compound 8.

Figure S9a. ¹H NMR spectrum of compound 9.

Figure S9c. ¹³C DEPT 135 NMR spectrum of compound 9.

Figure S9d. HSQC spectrum of compound 9.

Figure S9e. HMBC spectrum of compound 9.

Figure S9f. ¹H-¹H COSY spectrum of compound 9.

Figure S10a. ¹H NMR spectrum of compound 10.

Figure S10c. ¹³C DEPT 135 NMR spectrum of compound 10.

Figure S10e. HMBC spectrum of compound 10.

Figure S10f. ¹H-¹H COSY spectrum of compound 10.

Page 41 of 58

Figure S11a. ¹H NMR spectrum of compound 11.

Figure S11c. ¹³C DEPT 135 NMR spectrum of compound 11.

Figure S11f. ¹H-¹H COSY spectrum of compound 11.

Figure S12a. ¹H NMR spectrum of unpurified product mixture of the reaction in scheme 1, showing the presence of extra singlets at $\delta_{\rm H}$ 7.02 and 7.20 (H-3) in the product and the disappearance of H-8 signal ($\delta_{\rm H}$ 4.07) of the starting material, which indicated that the expected 2-arylbenzofuran skeleton was generated.

Figure S12b. HPLC separation chromatogram of the reaction solution of Scheme 2, along with the UV spectra of peaks 2 and 3 which are characteristic of a 2-arylbenzofuran skeleton.

Figure S13a. HRESIMS of compound 1.

Figure S13b. HRESIMS of compound 2.

Figure S13c. HRESIMS of compound 3.

Figure S13d. HRESIMS of compound 4.

Figure S13e. HRESIMS of compound 5.

Figure S13f. HRESIMS of compound 6.

Figure S13g. HRESIMS of compound 7.

Figure S13h. HRESIMS of compound 8.

Figure S13i. HRESIMS of compound 9.

Figure S13j. HRESIMS of compound 10.

AC310F5M38HP1HP2 Q011513C 149 (2.811) AM (Cen,4, 80.00, Ar,8000.0,0.00,1.00); Sm (SG, 2x3.00); Cm (149:157) 367.1149 TOF MS ES+ 2 34e3 Accurate MS Obsd: 367.1149 Calcd: 367.1158 for C19H20O6Na Error: 2.5 ppm 472.6725 Nal internal standard 368.1243 2 369.1249 322.7750 Nal internal standard - איזיין m/z 540 0-380 ++ 340 420 -llin 520 260 280 300 360 400 440 Т, 460 480 500 320

Figure S13k. HRESIMS of compound 11.

Figure S13l. ESIMS/MS of compound 1.

Figure S13m. ESIMS/MS of compound 2.

Figure S13n. ESIMS/MS of compound 3.

Figure S15. UV and ECD spectra of compound 3.

Evaluation of Hydroxyl Radical-scavenging Activity. A 160 μ L aliquot of freshly prepared mixed solution (80 μ L of 1.25 mM H₂O₂ and 80 μ L of 0.2 mM FeSO₄ in 50 mM phosphate buffer at pH 7.4) was added into each well containing 10 μ L of test sample in 25% DMSO solution, and then incubated at 37 °C for 5 min. Then, 80 μ L of esterase (1.0 unit/mL)-treated 2',7'-dichlorodihydrofluorescin diacetate (H₂DCF-DA, 2 μ M) in 50 mM phosphate buffer (pH 7.4) were rapidly added and mixed well. The final assay volume was 250 μ L. Changes in hydroxyl radicals were measured using a FL 800 fluorescence spectrophotometer (Bio-Tek) at an excitation wavelength of 485 nm and an emission wavelength of 528 nm after 30 min. Quercetin was used as a positive

control. Data were processed using nonlinear regression analysis (TableCurve2DV4; AISN Software Inc., Mapleton, OR).

Evaluation of Quinone Reductase-inducing Activity. Briefly, the murine hepalc1c7 cells (ATCC CRL-2026) were seeded onto 96-well plates at a density of 1.5×10^4 cells/mL in 190 μ L of cell culture medium/well. After incubation for 24 h, the cells were then dosed with 10 μ L of each test compound in 10% DMSO, or the positive control (L-sulforaphane), or the negative control (10% DMSO), and were incubated for 48 h. Two plates were used for each test sample in order to determine both cytotoxicity, using crystal violet staining of protein content, and QR-inducing activity, by measuring the NADPH-dependent reduction of 3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide (MTT) mediated by menadiol. Both the cytotoxicity and QR-inducing activity were measured at 595 nm with an ELISA plate reader. QR-inducing activity was expressed as IC₅₀, the concentration required to double the specific activity of QR. Cytotoxicity was expressed as IC₅₀, the concentration inhibiting cell growth by 50%. CI (Chemoprevention Index, IC₅₀/CD) value was also determined. Data were processed using nonlinear regression analysis (TableCurve2DV4; AISN Software Inc., Mapleton, OR).

Evaluation of NF-\kappaB Inhibition Activity. In brief, a nuclear extract was prepared from HeLa cells purchased from the American Type Culture Collection. An EZ-DetectTM Transcription Factor Assay System ELISA kit (Pierce Biotechnology, Rockford, IL) was used to assess the specific binding ability of activated NF- κ B to the biotinylated-consensus sequence under the presence of tested compounds. The activity of the p65 subunit of NF- κ B was measured by detecting the chemiluminescent signal in a Fluostar Optima plate reader (BMG Labtech Inc., Durham, NC). The IC₅₀ values were calculated using nonlinear regression analysis (Table curve2Dv4; AISN Software, Inc., Mapleton, OR). Rocaglamide was used as a positive control with an IC₅₀ value of 0.08 μ M in this assay.

Evaluation of Cytotoxicity. Human colon cancer cells (HT-29) were obtained from American Type

Collection (ATCC catalog no. HTB-38). Cells were incubated in a humidified incubator with an atmosphere of 95% air and 5% CO₂ at 37 °C. The harvested cells were seeded in 96-well (9500 cells/190 μ L) plates, and treated with the test compounds (10 μ L/well in triplicate) at various concentrations. For the control groups, 10 μ L of 10% DMSO were also added to each well. After incubation for three days at 37 °C in 5% CO₂, the cells were fixed to the plates by addition of 100 μ L cold 20% trichloroacetic acid (TCA) and incubated at 4 °C for 30 min. The plates were washed three times with tap water and dried overnight. The fixed cells were dyed with sulforhodamine B (SRB, an anionic protein stain) solution at 0.4% (w/v) in 1% acetic acid, and incubated at room temperature for 30 min. The plates were washed three times with 10 mM unbuffered Tris base (pH 10, 200 μ L/well), and the absorbance was read at 515 nm using a Bio-Tek μ Quant microplate reader. The IC₅₀ values were calculated using nonlinear regression analysis (Table curve2Dv4; AISN Software, Inc., Mapleton, OR).