1 Mathematical Appendix

1.1 Model Description

The population of Aedes vectors consists of uninfected (P_A) and infected (Q_A) eggs, and susceptible (S_A) , incubating (E_A) ; infected, but not yet infectious) and infectious (I_A) adult individuals. The size of the adult Aedes mosquito population is $N_A = S_A + E_A + I_A$. The population of adult Culex vectors consists of susceptible (S_C) , incubating (E_C) and infectious (I_C) adult individuals. The size of adult Culex mosquito population is $N_C = S_C + E_C + I_C$. The aquatic population of Culex only has uninfected (P_C) eggs because we assume there is no vertical transmission of RVFV in Culex. The livestock populations consist of susceptible (S_L) , incubating (E_L) , infectious (I_L) , and immune (R_L) individuals. The total livestock population size is $N_L = S_L + E_L + I_L + R_L$. The other host population serves as a sink, potentially diverting mosquito bites from competent hosts, and the total population size for these sink hosts is N_D . The resulting system of the ordinary differential equations is:

Vector 1 (A): Aedes mosquitoes with vertical transmission:

$$\frac{dP_A}{dt} = \frac{b_A K_A}{N_A} (N_A - q_A I_A) - \frac{b_A K_A}{N_A} P_A \tag{1}$$

$$\frac{dQ_A}{dt} = \frac{b_A K_A}{N_A} \left(\frac{q_A}{r_{LA}} I_A - Q_A\right) \tag{2}$$

$$\frac{dS_A}{dt} = \frac{b_A K_A}{N_A} P_A - \beta_{LA} S_A \frac{I_L}{N_L} - \frac{d_A N_A}{K_A} S_A \tag{3}$$

$$\frac{dQ_A}{dt} = \frac{b_A K_A}{N_A} \left(\frac{q_A}{r_{LA}} I_A - Q_A \right)$$

$$\frac{dS_A}{dt} = \frac{b_A K_A}{N_A} P_A - \beta_{LA} S_A \frac{I_L}{N_L} - \frac{d_A N_A}{K_A} S_A$$

$$\frac{dE_A}{dt} = \beta_{LA} S_A \frac{I_L}{N_L} - \frac{d_A N_A}{K_A} E_A - \varepsilon_A E_A$$

$$\frac{dE_A}{dt} = \beta_{LA} S_A \frac{I_L}{N_L} - \frac{d_A N_A}{K_A} E_A - \varepsilon_A E_A$$
(4)

$$\frac{dI_A}{dt} = \frac{b_A K_A}{N_A} Q_A + \varepsilon_A E_A - \frac{d_A N_A}{K_A} I_A \tag{5}$$

$$\frac{dN_A}{dt} = \frac{b_A K_A}{N_A} (P_A + Q_A) - \frac{d_A N_A}{K_A} N_A \tag{6}$$

Vector 2(C): Culex mosquitoes:

$$\frac{dP_C}{dt} = \frac{b_C K_C}{N_C} N_C - \frac{b_C K_C}{N_C} P_C \tag{7}$$

$$\frac{dS_C}{dt} = \frac{b_C K_C}{N_C} P_C - \beta_{LC} S_C \frac{I_L}{N_L} - \frac{d_C N_C}{K_C} S_C
\frac{dE_C}{dt} = \beta_{LC} S_C \frac{I_C}{N_C} - \frac{d_C N_C}{K_C} E_C - \varepsilon_C E_C$$
(8)

$$\frac{dE_C}{dt} = \beta_{LC} S_C \frac{I_C}{N_C} - \frac{d_C N_C}{K_C} E_C - \varepsilon_C E_C \tag{9}$$

$$\frac{dI_C}{dt} = \varepsilon_C E_C - \frac{d_C N_C}{K_C} I_C \tag{10}$$

$$\frac{dN_C}{dt} = \frac{b_C K_C}{N_C} P_C - \frac{d_C N_C}{K_C} N_C \tag{11}$$

Livestock host (L):

$$\frac{dS_L}{dt} = b_L N_L - \beta_{AL} S_L \frac{I_A}{N_A} - \beta_{CL} S_L \frac{I_C}{N_C} - \frac{d_L N_L}{K_L} S_L$$
(12)

$$\frac{dE_L}{dt} = \beta_{AL} S_L \frac{I_A}{N_A} + \beta_{CL} S_L \frac{I_C}{N_C} - \frac{d_L N_L}{K_L} E_L - \varepsilon_L E_L$$
(13)

$$\frac{dI_L}{dt} = \varepsilon_L E_L - (\mu_L + \gamma_L) I_L - \frac{d_L N_L}{K_L} I_L \tag{14}$$

$$\frac{dR_L}{dt} = \gamma_L I_L - \frac{d_L N_L}{K_L} R_L \tag{15}$$

$$\frac{dN_L}{dt} = b_L N_L - \frac{d_L N_L^2}{K_L} - \mu_L I_L \tag{16}$$

Dead-end host (D):

$$\frac{dN_D}{dt} = b_D N_D - \frac{d_D N_D^2}{K_D} \tag{17}$$

Table S1. Definitions for model parameters.

Symbol	Description	Definition	Reference
b_A	Birth rate of Aedes vectors	$=d_A$	
b_C	Birth rate of <i>Culex</i> vectors	$=d_C$	
b_L	Birth rate of livestock	$=d_{L}$	
b_D	Birth rate of dead-end hosts	$=d_D$	
K_A	Carrying capacity for Aedes	$\left(\frac{Aedes\ females}{CO_2\ trap-night}\right)_{time+1} \times GP_A \times (N_L + N_D)$	
	vectors	·	

K_C	Carrying capacity for Culex	$\left(\frac{Culex\ females}{CO_2\ trap-night}\right)_{time+1} \times GP_C \times (N_L + N_D)$	
	vectors	. J when	
K_L	Carrying capacity for live-	$=N_L$ (from data)	(see text &
	stock		Table S2)
K_D	Carrying capacity for dead-	$=N_D$ (from data)	(see text &
	end hosts		Table S2)
$1/d_A$	Life span of Aedes vectors	10 days	[1]
$1/d_C$	Life span of Culex vectors	10 days	[2,3]
$1/d_L$	Life span of livestock	5 years	
$1/d_D$	Life span of dead-end hosts	1 year	[4, 5]
q_A	Probability of vertical	0.001	[6, 7]
	transmission		
β_{LA}	Transmission rate from	$rac{r_{LA}}{GP_A} imes f_L$	
	livestock to Aedes		
β_{LC}	Transmission rate from	$rac{r_{LC}}{GP_C} imes f_L$	
	livestock to Culex		
β_{AL}	Transmission rate from	$eta_{LA}rac{N_A}{N_L}$	
	Aedes to livestock		
β_{CL}	Transmission rate from	$eta_{LC}rac{N_C}{N_L}$	
	Culex to livestock		
r_{LA}	Probability of transmission	0.005	[8]
	from livestock to Aedes per		
	bite		
r_{LC}	Probability of transmission	0.09	[8]
	from livestock to Culex per		
	bite		
GP_A	Gonotrophic period for	$2 + (-0.066 + 0.018T)^{-1}$	[9]
	Aedes in days		
GP_C	Gonotrophic period for	$2 + (-0.066 + 0.018T)^{-1}$	[9]
	Culex in days		

f_L	Probability of mosquito	$rac{N_L}{N_L+N_D}$	
	feeding on livestock		
$1/\varepsilon_A$	Extrinsic incubation period	$(-0.1038 + 0.0071T)^{-1}$	[10, 11]; but
	of RVFV in Aedes		see methods
$1/\varepsilon_C$	Extrinsic incubation period	$(-0.1038 + 0.0071T)^{-1}$	[10, 11]; but
	of RVFV in Culex		see methods
$1/\varepsilon_L$	Intrinsic incubation period	1 day	[12]
	of RVFV in livestock		
T	Temperature (°C)	10-year mean daily temperatures, 2002–2011	TOPS [13]
$1/\gamma_L$	Infectious period of live-	4 days	[14]
	stock		
$1/\mu_L$	Excess disease-related mor-	$-log(1-0.25) imes \gamma_L$	[14]
	tality of livestock		

Table S2. Data-based definitions for state variables for each grid cell. a

Symbol	Description	Definition	Source
N_A	Number of Aedes vectors	$\left(\frac{Aedes\ females}{CO_2\ trap-night}\right)_{time} \times GP_A \times (N_L + N_D)$	CO ₂ trap records from mosquito control agencies
N_C	Number of Culex vectors	$\left(\frac{Culex\ females}{CO_2\ trap-night}\right)_{time} \times GP_C \times \left(N_L + N_D\right)$	linked to land use classes defined in the National Land Cover Data Set 2006 CO ₂ trap records from mosquito control agencies linked to land use classes defined in the National Land Cover Data Set 2006
N_L	Number of livestock	Direct tabulation from spatial data	California Water Resources Control Board
N_D	Number of dead-end hosts	$\left(\frac{Birds}{Survey\ route}\right) \times \left(\frac{25}{50\pi0.2}\right)$	USGS Breeding Bird Survey

 $^{^{}a}$ See the methods section for further explanation.

1.2 Computation of \mathcal{R}_0

 \mathcal{R}_0 is computed according to the next-generation matrices method described by van den Driessche and Watmough [15], and the details are summarized here for completeness. For vertical transmission, the next-generation matrices (F_V and V_V) are as below:

$$F_V = \begin{bmatrix} 0 & \frac{b_A K_A}{N_A} \frac{q_A}{r_{LA}} \\ 0 & 0 \end{bmatrix}$$
 (18)

$$V_V = \begin{bmatrix} \frac{b_A K_A}{N_A} & 0\\ -\frac{b_A K_A}{N_A} & \frac{d_A N_A}{K_A} \end{bmatrix}$$

$$\tag{19}$$

Let $x_j = \frac{X_j}{N_j}$, j = A, C, L and X = S, E, I, K. Then the next-generation matrices of the horizontal transmission $(F_H \text{ and } V_H)$ are:

$$F_{H} = \begin{bmatrix} 0 & 0 & 0 & \beta_{LA}s_{A} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \beta_{AL}s_{L} & 0 & 0 & 0 & \beta_{CL}s_{L} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta_{LC}s_{C} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(20)$$

$$V_{H} = \begin{bmatrix} d_{A}/k_{A} + \varepsilon_{A} & 0 & 0 & \beta_{LA}s_{A} & 0 & 0 \\ -\varepsilon_{A} & d_{A}/k_{A} & 0 & 0 & 0 & 0 \\ 0 & 0 & d_{L}/k_{L} + \varepsilon_{L} & 0 & 0 & 0 \\ 0 & 0 & -\varepsilon_{L} & d_{L}/k_{L} + \mu_{L} + \gamma_{L} & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{C}/k_{C} + \varepsilon_{C} & 0 \\ 0 & 0 & 0 & 0 & -\varepsilon_{C} & d_{C}/k_{C} \end{bmatrix}$$

$$(21)$$

 \mathcal{R}_0 can be calculated as:

$$\mathcal{R}_0 = \rho \left(F_V V_V^{-1} \right) + \rho \left(F_H V_H^{-1} \right), \tag{22}$$

where $\rho(\text{matrix})$ represents the maximum eigenvalue of the matrix.

At disease-free equilibrium (DFE), $s_A = 1, s_C = 1, s_L = 1$. And $k_A = \frac{K_A}{N_A}, k_C = \frac{K_C}{N_C}, k_L = \frac{K_L}{N_L}$ were computed from vector and livestock data as in Tables S1 and S2.

1.3 Computation of \mathcal{E}_0

 \mathcal{E}_0 was computed according to the method described by Hosack et al. [16]. \mathcal{E}_0 was generated from the Hermitian parts of the next-generation matrices used for the \mathcal{R}_0 computation as follows:

$$\mathcal{E}_{0} = \rho \left(H(F_{V})H(V_{V})^{-1} \right) + \rho \left(H(F_{H})H(V_{H})^{-1} \right)$$

$$= \rho \left(\frac{F_{V} + F_{V}^{t}}{2} \cdot \left(\frac{V_{V} + V_{V}^{t}}{2} \right)^{-1} \right) + \rho \left(\frac{F_{H} + F_{H}^{t}}{2} \cdot \left(\frac{V_{H} + V_{H}^{t}}{2} \right)^{-1} \right), \tag{23}$$

where $\rho(\text{matrix})$ represents the maximum eigenvalue of the matrix.

At the disease-free equilibrium (DFE), $s_A = 1, s_C = 1, s_L = 1$. And $k_A = \frac{K_A}{N_A}, k_C = \frac{K_C}{N_C}, k_L = \frac{K_L}{N_L}$ were computed from vector and livestock data as in Tables S1 and S2.

1.4 Sensitivity analysis for \mathcal{R}_0 and \mathcal{E}_0

The following Table S3 shows the detailed results of the sensitivity analysis.

Table S3. Ranges of parameters and their partial rank correlation coefficient (PRCC) and p-values in relation to \mathcal{R}_0 and \mathcal{E}_0 .

Camabal	Range	To \mathcal{R}_0		To \mathcal{E}_0	
Symbol		PRCC	<i>p</i> -value	PRCC	p-value
$d_A(=b_A)$	$\left[\frac{1}{21},\frac{1}{7}\right]$	-4.7826	< 0.0001***	-3.4486	0.0007**
$d_C(=b_C)$	$\left[\frac{1}{21},\frac{1}{7}\right]$	-1.2888	0.1990	-3.7628	0.0002**
$d_L(=b_L)$	$\left[\frac{1}{10\times365}, \frac{1}{1\times365}\right]$	0.3857	0.7002	-0.1829	0.8550
$d_D(=b_D)$	$\left[\frac{1}{3.0\times365}, \frac{1}{0.5\times365}\right]$	1.0375	0.3007	1.3555	0.1768
N_A	(0, 1000]	-5.1767	< 0.0001***	5.8943	< 0.0001***
K_A	(0, 1000]	8.4685	< 0.0001***	6.9289	< 0.0001***
N_C	(0, 1000]	-5.5447	< 0.0001***	7.3618	< 0.0001***
K_C	(0, 1000]	5.1922	< 0.0001***	6.8351	< 0.0001***
$N_L(=K_L)$	[144, 25130]	-0.6223	0.5345	-0.6508	0.5160
$N_D(=K_D)$	[21, 262]	-1.0991	0.2731	-0.7998	0.4248
q_A	[0.001, 0.008]	0.2612	0.7942	1.3173	0.1893
r_{LA}	[0.001, 0.70]	8.7827	< 0.0001***	11.9349	< 0.0001***
r_{LC}	[0.001, 0.70]	6.8898	< 0.0001***	11.9748	< 0.0001***
$arepsilon_L$	$\left[\frac{1}{6},1\right]$	-0.8097	0.4191	-7.5587	< 0.0001***
γ_L	$\left[\frac{1}{5},1\right]$	-4.0321	0.0001**	-3.6577	0.0003**
μ_L	[0.025, 0.1]	-0.9156	0.3610	-0.2306	0.8179
T	$[6.97^{\circ}\text{C}, 31.79^{\circ}\text{C}]$	16.2418	< 0.0001***	2.6719	0.0082*

^{*:} significant at 0.01 level

References

- Jensen T, Washino R (1991) An assessment of the biological capacity of a Sacramento Valley population of Aedes melanimon to vector arboviruses. American Journal of Tropical Medicine and Hygiene 44: 355–363.
- Reisen WK, Reeves WC (1990) Bionomics and ecology of Culex tarsalis and other potential mosquito vector species. In: Epidemiology and Control of Mosquito-borne Arboviruses in California, 1943–1987, Sacramento, CA: California Mosquito and Vector Control Assoc., volume 1. pp. 254–329.

^{**:} significant at 0.001 level

^{***:} significant at 0.0001 level

- 3. Reisen W, Milby M, Reeves W, Meyer R, Bock M (1983) Population ecology of *Culex tarsalis* (Diptera: Culicidae) in a foothill environment of Kern County, California: temporal changes in female relative abundance, reproductive status, and survivorship. Annals of the Entomological Society of America 76: 800–808.
- 4. Fankhauser D (1971) Annual adult survival rates of blackbirds and starlings. Bird-Banding 42: 36–42.
- Searcy W, Yasukawa K (1981) Sexual size dimorphism and survival of male and female blackbirds (Icteridae). The Auk: 457–465.
- Linthicum K, Davies F, Kairo A, Bailey C, et al. (1985) Rift Valley fever virus (family Bunyaviridae, genus *Phlebovirus*). Isolations from Diptera collected during an inter-epizootic period in Kenya. Journal of Hygiene (London) 95: 197–209.
- Turell M, Linthicum K, Patrican L, Davies F, Kairo A, et al. (2008) Vector competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley fever virus. Journal of Medical Entomology 45: 102–108.
- 8. Turell M, Wilson W, Bennett K (2010) Potential for North American mosquitoes (Diptera: Culicidae) to transmit Rift Valley fever virus. Journal of Medical Entomology 47: 884–889.
- Reisen W, Milby M, Presser S, Hardy J (1992) Ecology of mosquitoes and St. Louis encephalitis virus in the Los Angeles basin of California, 1987–1990. Journal of Medical Entomology 29: 582– 598.
- 10. Turell M, Rossi C, Bailey C (1985) Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. American Journal of Tropical Medicine and Hygiene 34: 1211–1218.
- Turell M (1989) Effect of environmental temperature on the vector competence of Aedes fowleri for Rift Valley fever virus. Research in Virology 140: 147–154.
- 12. Nfon CK, Marszal P, Zhang S, Weingartl HM (2012) Innate immune response to Rift Valley fever virus in goats. PLoS Negl Trop Dis 6: e1623.

- 13. Nemani R, Votava P, Michaelis A, White M, Melton F, et al. (2007) Remote sensing methodologies for ecosystem management. In: Aswathanarayana U, editor, Food & Water Security, Oxford, UK: Taylor & Francis. pp. 1-19.
- 14. Erasmus B, Coetzer J (1981) The symptomatology and pathology of Rift Valley fever in domestic animals. Contributions to Epidemiology and Biostatistics 3: 77–82.
- 15. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180: 29 48.
- 16. Hosack GR, Rossignol PA, van den Driessche P (2008) The control of vector-borne disease epidemics. Journal of Theoretical Biology 255: 16–25.