1 Mathematical Appendix

1.1 Model Description

The population of Aedes vectors consists of uninfected (P4) and infected (Q ) eggs, and susceptible (S4),
incubating (E4; infected, but not yet infectious) and infectious (I4) adult individuals. The size of the
adult Aedes mosquito population is Ng4 = Sg + E4 + I4. The population of adult Culex vectors consists
of susceptible (S¢), incubating (E¢) and infectious (I¢) adult individuals. The size of adult Culex
mosquito population is No = S¢ + E¢ + I¢. The aquatic population of Culex only has uninfected (P¢)
eggs because we assume there is no vertical transmission of RVFV in Culex. The livestock populations
consist of susceptible (Sp), incubating (Ey), infectious (I1), and immune (Ry) individuals. The total
livestock population size is Ny, = S;, + Er, + I, + Rr,. The other host population serves as a sink,
potentially diverting mosquito bites from competent hosts, and the total population size for these sink
hosts is Np. The resulting system of the ordinary differential equations is:

Vector 1 (A): Aedes mosquitoes with vertical transmission:
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Vector 2 (C): Culex mosquitoes:
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Livestock host (L):
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Dead-end host (D):
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Table S1. Definitions for model parameters.
Symbol | Description Definition Reference
ba Birth rate of Aedes vectors =dyz
be Birth rate of Culex vectors =dc
br, Birth rate of livestock =d
bp Birth rate of dead-end hosts =dp
. . Aedes females
Ky Carrying capacity for Aedes (mhimeﬂ x GP4 x (N + Np)
vectors
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fr Probability of mosquito %
feeding on livestock
1/ea Extrinsic incubation period (—0.1038 + 0.00717") ! [10, 11]; but
of RVFV in Aedes see methods
1/ec Extrinsic incubation period (—0.1038 4 0.00717") ! [10,11]; but
of RVFV in Culex see methods
1/er Intrinsic incubation period 1 day [12]
of RVFV in livestock
T Temperature (°C) 10-year mean daily temperatures, 20022011 | TOPS [13]
1/vL Infectious period of live- 4 days [14]
stock
1/pr Excess disease-related mor- —log(1 —0.25) x v, [14]
tality of livestock

Table S2. Data-based definitions for state variables for each grid cell.®

’ Symbol \ Description \ Definition \ Source ‘

Aecdes females
Ny iu;nber t of (%)time x GPy x (N, + Np) | COq F:ap ricolrds fr(?m
edes vectors mosquito control agencies
linked to land use classes
defined in the National
Land Cover Data Set 2006

Culex femal

Ne 1gu;nber t of (#%)“me X GPc x (N, + Np) | COq @zap r(t%colrds frqm
'ulex vectors mosquito control agencies
linked to land use classes
defined in the National
Land Cover Data Set 2006

Ny, Number  of Direct tabulation from spatial data California ~ Water  Re-
livestock sources Control Board
Np | Number of (st ) x (505) USGS Breeding Bird Sur-
dead-end vey
hosts

@ See the methods section for further explanation.



1.2 Computation of R

Ro is computed according to the next-generation matrices method described by van den Driessche and
Watmough [15], and the details are summarized here for completeness. For vertical transmission, the

next-generation matrices (Fy and Vy/) are as below:

0 baKa qa

Fy = Narea (18)
0 0
bak 0
Vy = 4 (19)
_baKy daNa
Na Ka

Let z; = %,j = A,C,L and X = S,E,I, K. Then the next-generation matrices of the horizontal
J

transmission (Fy and V) are:
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Ro can be calculated as:
Ro=p(FvV ) +p(FuVu),

where p(matrix) represents the maximum eigenvalue of the matrix.
At disease-free equilibrium (DFE), sq = 1,s¢ = 1,s;, = 1. And k4 = %’ kc = %

computed from vector and livestock data as in Tables S1 and S2.

1.3 Computation of &

=K were
L

N

&y was computed according to the method described by Hosack et al. [16]. & was generated from the

Hermitian parts of the next-generation matrices used for the Ry computation as follows:

& = p(HE)HW)) +p (HF)HVE)™")
p(FV;LFV ' (VV—;VV> > +p(FH-;FH . (VH—;VH> )

where p(matrix) represents the maximum eigenvalue of the matrix.

At the disease-free equilibrium (DFE), sy = 1,5¢ = 1,5;, = 1. And ks = K—Af‘,kc = ﬁ—g,kL = Ko

N

were computed from vector and livestock data as in Tables S1 and S2.

1.4 Sensitivity analysis for Ry and &,

The following Table S3 shows the detailed results of the sensitivity analysis.



Table S3. Ranges of parameters and their partial rank correlation coefficient (PRCC) and p-values in
relation to Ry and &.

Symbol Range PROC | R](;—value PROC | 82)—Value
da(=ba) [, 2] —4.7826 | < 0.0001*** | —3.4486 | 0.0007**
de(=be) [+, 3] —1.2888 | 0.1990 | —3.7628 | 0.0002**
dr(=byr) ToaseE leJ 0.3857 0.7002 | —0.1829 |  0.8550
dp(=bp) Toas0s mJ 1.0375 0.3007 1.3555 0.1768
Ny (0, 1000] —5.1767 | < 0.0001*** | 5.8943 | < 0.0001***
Ka (0, 1000] 8.4685 | < 0.0001*** | 6.9289 | < 0.0001***
Nc (0, 1000] —5.5447 | < 0.0001*** | 7.3618 | < 0.0001***
Kc (0, 1000] 51922 | <0.0001** | 6.8351 | < 0.0001***
NL(=Kp) [144,25130] —0.6223 | 0.5345 | —0.6508 |  0.5160
Np(=Kp) 21, 262] —1.0991 [ 0.2731 —0.7998 | 0.4248
qa [0.001, 0.008] 0.2612 0.7942 1.3173 0.1893
rLA [0.001, 0.70] 8.7827 | < 0.0001*** | 11.9349 | < 0.0001***
rLe [0.001, 0.70] 6.8898 | < 0.0001*** | 11.9748 | < 0.0001**
£L [5.1] —0.8097 |  0.4191 —7.5587 | < 0.0001***
L [1.1] —4.0321 [ 0.0001** [ —3.6577 | 0.0003**
[L [0.025,0.1] —0.9156 | 0.3610 | —0.2306 |  0.8179
T [6.97°C,31.79°C] | 16.2418 | < 0.0001*** | 2.6719 0.0082*
*: significant at 0.01 level

**: significant at 0.001 level

***: significant at 0.0001 level
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