		Patients	with PD		Controls		
Series	No. of patients	Age	Age at onset	No. (%) Male	No. of controls	Age	No. (%) Male
Caucasian series	5991				4331		
Australia – Queensland	923	$72 \pm 10 (38 - 106)$	59 ± 11 (23 - 96)	570 (62%)	713	$67 \pm 10 (26 - 103)$	257 (36%)
France – Lille	548	64 ± 10 (24 - 92)	55 ± 11 (24 - 86)	300 (55%)	143	65 ± 11 (35 - 89)	64 (45%)
Germany							
Frankfurt	232	72 ± 11 (27 - 94)	56 ± 11 (26 - 79)	119 (51%)	47	59 ± 10 (27 - 69)	30 (64%)
Luebeck	512	62 ± 12 (22 - 95)	45±12 (18 - 80)	297 (58%)	289	55 ± 14 (21 - 96)	137 (47%)
Tuebingen	330	53 ± 12 (18 - 81)	NA	193 (58%)	339	53 ± 12 (27 - 72)	187 (55%)
Greece							
Athens	134	73 ± 10 (35 - 93)	66 ± 11 (34 - 88)	78 (58%)	94	71 ± 10 (42 - 88)	42 (45%)
Thessaly	316	$70 \pm 9 (38 - 89)$	$65 \pm 9 (30 - 86)$	158 (50%)	311	$70 \pm 9 (35 - 90)$	157 (50%)
Ireland – Dublin	360	67 ± 10 (37 - 94)	$51 \pm 10 (18 - 77)$	211 (59%)	444	67±24 (23 - 104)	159 (36%)
Italy							
Mangone	185	72 ± 9 (44 - 98)	$61 \pm 9 (38 - 84)$	100 (54%)	168	54 ± 9 (40 - 80)	77 (46%)
Milan	95	68 ± 9 (48 - 90)	$62 \pm 10 (37 - 90)$	50 (53%)	102	$62 \pm 7 (42 - 76)$	63 (62%)
Rome	189	68 ± 8 (47 - 92)	$58 \pm 8 (45 - 85)$	96 (51%)	95	69 ± 10 (44 - 91)	43 (45%)
Norway - Trondheim	602	74 ± 11 (31 - 100)	59 ± 11 (28 - 88)	350 (58%)	526	71 ± 12 (44 - 107)	293 (56%)
Poland - Katowice	349	70 ± 11 (39 - 94)	57 ± 12 (25 - 81)	218 (62%)	340	64 ± 16 (23 - 98)	157 (46%)
Sweden – Stockholm	91	76 ± 9 (56 - 94)	66 ± 11 (39 - 90)	51 (56%)	180	74 ± 10 (53 - 96)	79 (44%)
United States							
Jacksonville, FL	377	71 ± 11 (35 - 91)	62 ± 12 (28 - 83)	209 (55%)	364	73 ± 11 (34 - 93)	189 (52%)
Rochester, MN	748	$68 \pm 9 (32 - 98)$	$64 \pm 9 (23 - 88)$	453 (61%)	176	60 ± 6 (43 - 77)	111 (63%)
Asian series	1351				938		
Japan – Tokyo	171	49±13 (22 - 88)	40±11 (21 - 80)	92 (54%)	90	57±16 (23 - 89)	42 (47%)
Korea							
Anyang Hallym	150	61±14 (20 - 89)	59±14 (20 - 89)	78 (52%)	144	52±6 (42 - 72)	16 (11%)
Seoul	661	65±9 (33 - 91)	55±9 (23 - 85)	292 (44%)	406	63±9 (37 - 85)	174 (43%)
Taiwan – Taipei	369	NA	58±11 (26 - 83)	210 (57%)	298	NA	90 (30%)

Supplementary Table 1: Number of patients with PD and number of controls according to series, country, and site

The sample median \pm SD (minimum – maximum) is given for age and age at onset. Information was unavailable regarding age in the Caucasian series for 147 patients with PD (105 Luebeck, 39 Tuebingen, 1 Athens, 1 Trondheim, 1 Rochester) and 21 controls (12 Luebeck, 4 Tuebingen, 2 Milan, 2 Katowice, 1 Rochester). Information was unavailable regarding age in the Asian series for 371 patients with PD (2 Tokyo, 369 Taipei) and 298 controls (298 Taipei). Information was unavailable regarding age at onset for 723 patients in the Caucasian series (10 Queensland, 15 Frankfurt, 147 Luebeck, 330 Tuebingen, 2 Athens, 109 Dublin, 1 Rome, 90 Trondheim, 5 Katowice, 2 Stockholm, 4 Jacksonville, 8 Rochester) and 8 patients in the Asian series (8 Taipei).

Supplementary Table 2: Primer sequences

SNCA rs181489 ACGTTGGATGCTCTATTTTAGAATACAAAC ACGTTGGATGCATGGGTGCATGGGTGTAACTGGTGGTC ACGTTGGATGCATGGGTGCATGGGTATACTGGTGGTC ACGTTGGATGACAGTCAAATGGCAGCCTCT ACGTTGGATGACAGTCAAATGGCAGCCACAATGTGAGAGA ACGTTGGATGACAACAGACAAAATGCCAAACGC AACGTTGGATGACAACAGACAAAAGACAAAACACAAAACACAAAAACAAAAACAAAAACAAAAACAAAA	Uelle	rs Number	rs Number	PCR Primer Forward	PCR Primer Reverse	Extend Primer
SNCA rs356219 ACGTTGGATGCATGGGTATACTGGTGGTTC ACGTTGGATGATAACAAACAACACAAAACAC atatAAAACAAACAAAACACAAAATTCC. SNCA rs11931074 ACGTTGGATGACAGTCAAATGGCAGCCTTC ACGTTGGATGACAACAGACCAAATGGCAGCCATC ACGTTGGATGATGTTTAAACG AATTGTGAATATGTCTTTGACTC SNCA rs2583988 ACGTTGGATGACAACAGACCAATGTGAGAG ACGTTGGATGCTGCGTGCGTCATAAAACGA ACGTTGGATGACTAGGATGCCTGCGTTTGACAACGGATGCCTGCGTCGCTGCGTCATAAAAATGGG atatAAAACAAACAAACAAAACAAAACCAAAATGCC LRRK2 rs7133914 ACGTTGGATGGGATTCTTGCCTGTCGTTTG ACGTTGGATGTCGCTGCGTGCGTCATAAAAATGGG tcTGAGTACTATAGAATTCCTCA	SNCA	rs181489	rs181489	ACGTTGGATGCTCTATTTTAGAATACAAAC	ACGTTGGATGCTGTAAGTGGAAAGTTATAG	TATAGATATTATCAAAGAACCAAGAA
SNCA rs11931074 ACGTTGGATGACAGTCAAATGGCAGCCTTC SNCA rs2583988 ACGTTGGATGACAACAGACCAAATGTGAGAG LRRK2 rs7133914 ACGTTGGATGGCAGGGATTCTTGCCTGTCGTTGG ACGTTGGATGTCGCTGCGTCGCTGCGTCGTCGTCG ACGTTGGATGTCGCTGCGTCGCTGCGTCGCGTC	SNCA	rs356219	rs356219	ACGTTGGATGCATGGGTATACTGGTGGTTC	ACGTTGGATGATGTATAAGAAAAAAAAAAAAAAAAAAAA	ataatAAAACAAACACAAAATTCCA
SNCA rs2583988 ACGTTGGATGACAACAGACCAATGTGAGAG ACGTTGGATGGTTTGGAATCATGTTAAACG gaagCATGTTAAACGTTTATAAGAA LRRK2 rs7133914 ACGTTGGATGGGATTCTTGCCTGTCGTTTG ACGTTGGATGTCGCTGCGTCATAAAAATGGG ttcTGAGTACTATAGAATTCCTCA	SNCA	rs11931074	rs11931074	ACGTTGGATGACAGTCAAATGGCAGCCTTC	ACGTTGGATGTCTTCCTCGGAAGAGATACC	AATTGTGAATATGTCTTTGACTG
LRRK2 TS/133914 ACGTIGGATGGGATGGCTGCGTTGG ACGTIGGATGTCGCTGCGTCGCTGCGTCATAAAATGGG TtcTGAGTACTATAGAATTCCTCA	SNCA	rs2583988	rs2583988	ACGTTGGATGACAACAGACCAATGTGAGAG	ACGTTGGATGGTTTGGAATCATGTTAAACG	gaagCATGTTAAACGTTTATAAGAAGT
AUSCRE	LRRK2	rs/133914	2 rs/133914	ACGTTGGATGGGATTCTTGCCTGTCGTTTG	ACGITGGATGICGCIGCGICATAAAATGGG	ttcTGAGTACTATAGAATTCCTCA
CONTRACTION AND					tip Har	

Variant/Series	Minor allele count, %	Major allele count, %	Minor-Minor genotype count, %	Heterozygous count, %	Major-Major count, %
SNCA rs181489					
Asian patients	T: 6 (0.2%)	C: 2650 (99.8%)	0 (0.0%)	6 (0.5%)	1322 (99.5%)
Asian controls	T: 1 (0.1%)	C: 1613 (99.9%)	0 (0.0%)	1 (0.1%)	806 (99.9%)
Caucasian patients	T: 4010 (34.7%)	C: 7546 (65.3%)	743 (12.9%)	2524 (43.7%)	2511 (43.5%)
Caucasian controls	T: 2468 (29.7%)	C: 5832 (70.3%)	369 (8.9%)	1730 (41.7%)	2051 (49.4%)
SNCA rs356219					
Asian patients	A: 957 (36.6%)	G: 1655 (63.4%)	169 (12.9%)	619 (47.4%)	518 (39.7%)
Asian controls	A: 826 (46.4%)	G: 956 (53.6%)	198 (22.2%)	430 (48.3%)	263 (29.5%)
Caucasian patients	G: 5007 (42.6%)	A: 6735 (57.4%)	1084 (18.5%)	2839 (48.4%)	1948 (33.2%)
Caucasian controls	G: 3273 (38.4%)	A: 5259 (61.6%)	630 (14.8%)	2013 (47.2%)	1623 (38.0%)
SNCA rs11931074					
Asian patients	G: 1012 (37.6%)	T: 1678 (62.4%)	184 (13.7%)	644 (47.9%)	517 (38.4%)
Asian controls	G: 868 (46.5%)	T: 998 (53.5%)	208 (22.3%)	452 (48.4%)	273 (29.3%)
Caucasian patients	T: 1089 (9.1%)	G: 10815 (90.9%)	48 (0.8%)	993 (16.7%)	4911 (82.5%)
Caucasian controls	T: 610 (7.1%)	G: 7992 (92.9%)	25 (0.6%)	560 (13.0%)	3716 (86.4%)
SNCA rs2583988					
Asian patients	T: 0 (0.0%)	C: 2660 (100.0%)	0 (0.0%)	0 (0.0%)	1330 (100.0%)
Asian controls	T: 1 (0.1%)	C: 1851 (99.9%)	0 (0.0%)	1 (0.1%)	925 (99.9%)
Caucasian patients	T: 3620 (30.5%)	C: 8234 (69.5%)	593 (10.0%)	2434 (41.1%)	2900 (48.9%)
Caucasian controls	T: 2270 (26.5%)	C: 6304 (73.5%)	333 (7.8%)	1604 (37.4%)	2350 (54.8%)
LRRK2 p.R1398H					
Asian patients	A: 284 (10.6%)	G: 2406 (89.4%)	23 (1.7%)	238 (17.7%)	1084 (80.6%)
Asian controls	A: 239 (12.8%)	G: 1623 (87.2%)	9 (1.0%)	221 (23.7%)	701 (75.3%)
Caucasian patients	A: 742 (6.3%)	G: 11046 (93.7%)	30 (0.5%)	682 (11.6%)	5182 (87.9%)
Caucasian controls	A: 617 (7.2%)	G: 7947 (92.8%)	15 (0.4%)	587 (13.7%)	3680 (85.9%)
MAPT rs1052553					
Asian patients	G: 5 (0.2%)	A: 2615 (99.8%)	0 (0.0%)	5 (0.4%)	1305 (99.6%)
Asian controls	G: 0 (0.0%)	A: 1852 (100%)	0 (0.0%)	0 (0.0%)	926 (100.0%)
Caucasian patients	G: 2111 (17.6%)	A: 9871 (82.4%)	218 (3.6%)	1675 (28.0%)	4098 (68.4%)
Caucasian controls	G: 1794 (20.7%)	A: 6868 (79.3%)	211 (4.9%)	1372 (31.7%)	2748 (63.4%)

Supplementary Table 3a: Genotype counts and frequencies for each series

Supplementary Table 3b: Genotype counts and frequencies for SNCA rs181489 for each site

Series	Country/Site	Disease group	Minor allele count %	Major allele count %	Minor-Minor count,	Heterozygous	Major-Major
Series	Country/Site	Disease group	Wintor affecte count, 70	Wajor ancie count, 70	%	count, %	count, %
Caucasian	Australia – Queensland	PD	T: 593 (33.1%)	C: 1197 (66.9%)	98 (10.9%)	397 (44.4%)	400 (44.7%)
Caucasian	Australia – Queensland	Controls	T: 423 (30.9%)	C: 947 (69.1%)	58 (8.5%)	307 (44.8%)	320 (46.7%)
Caucasian	France – Lille	PD	T: 352 (33.1%)	C: 710 (66.9%)	57 (10.7%)	238 (44.8%)	236 (44.4%)
Caucasian	France – Lille	Controls	T: 83 (30.3%)	C: 191 (69.7%)	11 (8.0%)	61 (44.5%)	65 (47.4%)
Caucasian	Germany – Frankfurt	PD	T: 157 (35.0%)	C: 291 (65.0%)	19 (8.5%)	119 (53.1%)	86 (38.4%)
Caucasian	Germany – Frankfurt	Controls	T: 32 (39.0%)	C: 50 (61.0%)	7 (17.1%)	18 (43.9%)	16 (39.0%)
Caucasian	Germany – Luebeck	PD	T: 344 (36.4%)	C: 602 (63.6%)	85 (18.0%)	174 (36.8%)	214 (45.2%)
Caucasian	Germany – Luebeck	Controls	T: 157 (29.6%)	C: 373 (70.4%)	25 (9.4%)	107 (40.4%)	133 (50.2%)
Caucasian	Germany – Tuebingen	PD	T: 223 (34.1%)	C: 431 (65.9%)	39 (11.9%)	145 (44.3%)	143 (43.7%)
Caucasian	Germany – Tuebingen	Controls	T: 198 (29.3%)	C: 478 (70.7%)	29 (8.6%)	140 (41.4%)	169 (50.0%)
Caucasian	Greece – Athens	PD	T: 100 (39.4%)	C: 154 (60.6%)	17 (13.4%)	66 (52.0%)	44 (34.6%)
Caucasian	Greece – Athens	Controls	T: 57 (31.7%)	C: 123 (68.3%)	10 (11.1%)	37 (41.1%)	43 (47.8%)
Caucasian	Greece – Thessaly	PD	T: 215 (37.5%)	C: 359 (62.5%)	46 (16.0%)	123 (42.9%)	118 (41.1%)
Caucasian	Greece – Thessaly	Controls	T: 156 (29.2%)	C: 378 (70.8%)	17 (6.4%)	122 (45.7%)	128 (47.9%)
Caucasian	Ireland – Dublin	PD	T: 262 (38.1%)	C: 426 (61.9%)	58 (16.9%)	146 (42.4%)	140 (40.7%)
Caucasian	Ireland – Dublin	Controls	T: 232 (27.4%)	C: 614 (72.6%)	38 (9.0%)	156 (36.9%)	229 (54.1%)
Caucasian	Italy – Mangone	PD	T: 125 (34.7%)	C: 235 (65.3%)	20 (11.1%)	85 (47.2%)	75 (41.7%)
Caucasian	Italy – Mangone	Controls	T: 89 (26.6%)	C: 245 (73.4%)	9 (5.4%)	71 (42.5%)	87 (52.1%)
Caucasian	Italy – Milan	PD	T: 61 (37.2%)	C: 103 (62.8%)	8 (9.8%)	45 (54.9%)	29 (35.4%)
Caucasian	Italy – Milan	Controls	T: 39 (27.5%)	C: 103 (72.5%)	9 (12.7%)	21 (29.6%)	41 (57.7%)
Caucasian	Italy – Rome	PD	T: 144 (38.1%)	C: 234 (61.9%)	28 (14.8%)	88 (46.6%)	73 (38.6%)
Caucasian	Italy – Rome	Controls	T: 59 (31.1%)	C: 131 (68.9%)	8 (8.4%)	43 (45.3%)	44 (46.3%)
Caucasian	Norway – Trondheim	PD	T: 392 (32.6%)	C: 812 (67.4%)	80 (13.3%)	232 (38.5%)	290 (48.2%)
Caucasian	Norway – Trondheim	Controls	T: 340 (32.4%)	C: 708 (67.6%)	56 (10.7%)	228 (43.5%)	240 (45.8%)
Caucasian	Poland – Katowice	PD	T: 238 (34.1%)	C: 460 (65.9%)	47 (13.5%)	144 (41.3%)	158 (45.3%)
Caucasian	Poland – Katowice	Controls	T: 195 (29.0%)	C: 477 (71.0%)	30 (8.9%)	135 (40.2%)	171 (50.9%)
Caucasian	Sweden – Stockholm	PD	T: 50 (27.8%)	C: 130 (72.2%)	10 (11.1%)	30 (33.3%)	50 (55.6%)
Caucasian	Sweden – Stockholm	Controls	T: 102 (29.0%)	C: 250 (71.0%)	17 (9.7%)	68 (38.6%)	91 (51.7%)
Caucasian	United States - Jacksonville, FL	PD	T: 270 (36.0%)	C: 480 (64.0%)	50 (13.3%)	170 (45.3%)	155 (41.3%)
Caucasian	United States - Jacksonville, FL	Controls	T: 201 (27.9%)	C: 519 (72.1%)	32 (8.9%)	137 (38.1%)	191 (53.1%)
Caucasian	United States - Rochester, MN	PD	T: 484 (34.4%)	C: 922 (65.6%)	81 (11.5%)	322 (45.8%)	300 (42.7%)
Caucasian	United States - Rochester, MN	Controls	T: 105 (30.0%)	C: 245 (70.0%)	13 (7.4%)	79 (45.1%)	83 (47.4%)
Asian	Japan – Tokyo	PD	T: 0 (0.0%)	C: 338 (100.0%)	0 (0.0%)	0 (0.0%)	169 (100.0%)
Asian	Japan – Tokyo	Controls	T: 0 (0.0%)	C: 166 (100.0%)	0 (0.0%)	0 (0.0%)	83 (100.0%)
Asian	Korea - Anyang Hallym	PD	T: 3 (1.1%)	C: 281 (98.9%)	0 (0.0%)	3 (2.1%)	139 (97.9%)
Asian	Korea - Anyang Hallym	Controls	T: 1 (0.4%)	C: 279 (99.6%)	0 (0.0%)	1 (0.7%)	139 (99.3%)
Asian	Korea - Seoul – Cases	PD	T: 0 (0.0%)	C: 1300 (100.0%)	0 (0.0%)	0 (0.0%)	650 (100.0%)
Asian	Korea - Seoul - Controls	Controls	T: 0 (0.0%)	C: 794 (100.0%)	0 (0.0%)	0 (0.0%)	397 (100.0%)
Asian	Taiwan - Taipei - Cases	PD	T: 3 (0.4%)	C: 731 (99.6%)	0 (0.0%)	3 (0.8%)	364 (99.2%)
Asian	Taiwan - Taipei - Controls	Controls	T: 0 (0.0%)	C: 374 (100.0%)	0 (0.0%)	0 (0.0%)	187 (100.0%)

Supplementary Table 3c: Genotype counts and frequencies for SNCA rs356219 for each site

C	Constant/Site	D:	M :	Main allala anna 0/	Minor-Minor genotype	Heterozygous	Major-Major
Series	Country/Site	Disease group	Winter affele count, %	Major anele count, %	count, %	count, %	count, %
Caucasian	Australia – Queensland	PD	G: 749 (41.4%)	A: 1059 (58.6%)	147 (16.3%)	455 (50.3%)	302 (33.4%)
Caucasian	Australia – Queensland	Controls	G: 541 (39.0%)	A: 847 (61.0%)	102 (14.7%)	337 (48.6%)	255 (36.7%)
Caucasian	France – Lille	PD	G: 461 (42.1%)	A: 633 (57.9%)	93 (17.0%)	275 (50.3%)	179 (32.7%)
Caucasian	France – Lille	Controls	G: 110 (39.0%)	A: 172 (61.0%)	20 (14.2%)	70 (49.6%)	51 (36.2%)
Caucasian	Germany – Frankfurt	PD	G: 200 (43.5%)	A: 260 (56.5%)	36 (15.7%)	128 (55.7%)	66 (28.7%)
Caucasian	Germany – Frankfurt	Controls	G: 35 (39.8%)	A: 53 (60.2%)	7 (15.9%)	21 (47.7%)	16 (36.4%)
Caucasian	Germany – Luebeck	PD	G: 453 (45.0%)	A: 553 (55.0%)	110 (21.9%)	233 (46.3%)	160 (31.8%)
Caucasian	Germany – Luebeck	Controls	G: 212 (36.8%)	A: 364 (63.2%)	38 (13.2%)	136 (47.2%)	114 (39.6%)
Caucasian	Germany – Tuebingen	PD	G: 288 (43.8%)	A: 370 (56.2%)	69 (21.0%)	150 (45.6%)	110 (33.4%)
Caucasian	Germany – Tuebingen	Controls	G: 238 (35.1%)	A: 440 (64.9%)	41 (12.1%)	156 (46.0%)	142 (41.9%)
Caucasian	Greece – Athens	PD	G: 123 (46.6%)	A: 141 (53.4%)	28 (21.2%)	67 (50.8%)	37 (28.0%)
Caucasian	Greece – Athens	Controls	G: 73 (41.0%)	A: 105 (59.0%)	18 (20.2%)	37 (41.6%)	34 (38.2%)
Caucasian	Greece – Thessaly	PD	G: 260 (41.8%)	A: 362 (58.2%)	61 (19.6%)	138 (44.4%)	112 (36.0%)
Caucasian	Greece – Thessaly	Controls	G: 230 (37.1%)	A: 390 (62.9%)	36 (11.6%)	158 (51.0%)	116 (37.4%)
Caucasian	Ireland – Dublin	PD	G: 331 (47.0%)	A: 373 (53.0%)	76 (21.6%)	179 (50.9%)	97 (27.6%)
Caucasian	Ireland – Dublin	Controls	G: 406 (47.5%)	A: 448 (52.5%)	106 (24.8%)	194 (45.4%)	127 (29.7%)
Caucasian	Italy – Mangone	PD	G: 150 (41.0%)	A: 216 (59.0%)	27 (14.8%)	96 (52.5%)	60 (32.8%)
Caucasian	Italy – Mangone	Controls	G: 113 (34.0%)	A: 219 (66.0%)	22 (13.3%)	69 (41.6%)	75 (45.2%)
Caucasian	Italy – Milan	PD	G: 86 (46.7%)	A: 98 (53.3%)	20 (21.7%)	46 (50.0%)	26 (28.3%)
Caucasian	Italy – Milan	Controls	G: 70 (34.7%)	A: 132 (65.3%)	14 (13.9%)	42 (41.6%)	45 (44.6%)
Caucasian	Italy – Rome	PD	G: 166 (45.1%)	A: 202 (54.9%)	38 (20.7%)	90 (48.9%)	56 (30.4%)
Caucasian	Italy – Rome	Controls	G: 65 (35.3%)	A: 119 (64.7%)	10 (10.9%)	45 (48.9%)	37 (40.2%)
Caucasian	Norway – Trondheim	PD	G: 526 (43.8%)	A: 674 (56.2%)	124 (20.7%)	278 (46.3%)	198 (33.0%)
Caucasian	Norway – Trondheim	Controls	G: 430 (40.9%)	A: 622 (59.1%)	84 (16.0%)	262 (49.8%)	180 (34.2%)
Caucasian	Poland - Katowice	PD	G: 278 (40.8%)	A: 404 (59.2%)	64 (18.8%)	150 (44.0%)	127 (37.2%)
Caucasian	Poland - Katowice	Controls	G: 242 (35.8%)	A: 434 (64.2%)	40 (11.8%)	162 (47.9%)	136 (40.2%)
Caucasian	Sweden – Stockholm	PD	G: 68 (37.8%)	A: 112 (62.2%)	15 (16.7%)	38 (42.2%)	37 (41.1%)
Caucasian	Sweden – Stockholm	Controls	G: 130 (36.3%)	A: 228 (63.7%)	25 (14.0%)	80 (44.7%)	74 (41.3%)
Caucasian	United States - Jacksonville, FL	PD	G: 339 (45.3%)	A: 409 (54.7%)	80 (21.4%)	179 (47.9%)	115 (30.7%)
Caucasian	United States - Jacksonville, FL	Controls	G: 248 (34.8%)	A: 464 (65.2%)	44 (12.4%)	160 (44.9%)	152 (42.7%)
Caucasian	United States - Rochester, MN	PD	G: 529 (37.8%)	A: 869 (62.2%)	96 (13.7%)	337 (48.2%)	266 (38.1%)
Caucasian	United States - Rochester, MN	Controls	G: 130 (36.9%)	A: 222 (63.1%)	23 (13.1%)	84 (47.7%)	69 (39.2%)
Asian	Japan – Tokyo	PD	A: 111 (32.6%)	G: 229 (67.4%)	18 (10.6%)	75 (44.1%)	77 (45.3%)
Asian	Japan – Tokyo	Controls	A: 73 (44.0%)	G: 93 (56.0%)	14 (16.9%)	45 (54.2%)	24 (28.9%)
Asian	Korea - Anyang Hallym	PD	A: 92 (35.1%)	G: 170 (64.9%)	18 (13.7%)	56 (42.7%)	57 (43.5%)
Asian	Korea - Anyang Hallym	Controls	A: 106 (44.2%)	G: 134 (55.8%)	28 (23.3%)	50 (41.7%)	42 (35.0%)
Asian	Korea – Seoul	PD	A: 472 (36.4%)	G: 824 (63.6%)	78 (12.0%)	316 (48.8%)	254 (39.2%)
Asian	Korea – Seoul	Controls	A: 362 (45.5%)	G: 434 (54.5%)	88 (22.1%)	186 (46.7%)	124 (31.2%)
Asian	Taiwan – Taipei	PD	A: 282 (39.5%)	G: 432 (60.5%)	55 (15.4%)	172 (48.2%)	130 (36.4%)
Asian	Taiwan – Taipei	Controls	A: 285 (49.1%)	G: 295 (50.9%)	68 (23.4%)	149 (51.4%)	73 (25.2%)

Supplementary Table 3d: Genotype counts and frequencies for SNCA rs11931074 for each site

Sarias	Country/Site	Disease group	Minor allele count %	Major allele count %	Minor-Minor genotype	Heterozygous	Major-Major
Selles	Country/She	Disease group	Winfor ancie count, 78	Wajor ancie count, %	count, %	count, %	count, %
Caucasian	Australia – Queensland	PD	T: 150 (8.2%)	G: 1678 (91.8%)	6 (0.7%)	138 (15.1%)	770 (84.2%)
Caucasian	Australia – Queensland	Controls	T: 102 (7.2%)	G: 1310 (92.8%)	4 (0.6%)	94 (13.3%)	608 (86.1%)
Caucasian	France – Lille	PD	T: 96 (8.8%)	G: 998 (91.2%)	4 (0.7%)	88 (16.1%)	455 (83.2%)
Caucasian	France – Lille	Controls	T: 20 (7.0%)	G: 266 (93.0%)	1 (0.7%)	18 (12.6%)	124 (86.7%)
Caucasian	Germany – Frankfurt	PD	T: 45 (9.7%)	G: 419 (90.3%)	5 (2.2%)	35 (15.1%)	192 (82.8%)
Caucasian	Germany – Frankfurt	Controls	T: 5 (5.3%)	G: 89 (94.7%)	0 (0.0%)	5 (10.6%)	42 (89.4%)
Caucasian	Germany – Luebeck	PD	T: 81 (7.9%)	G: 941 (92.1%)	5 (1.0%)	71 (13.9%)	435 (85.1%)
Caucasian	Germany – Luebeck	Controls	T: 37 (6.4%)	G: 539 (93.6%)	1 (0.3%)	35 (12.2%)	252 (87.5%)
Caucasian	Germany – Tuebingen	PD	T: 62 (9.4%)	G: 598 (90.6%)	4 (1.2%)	54 (16.4%)	272 (82.4%)
Caucasian	Germany – Tuebingen	Controls	T: 43 (6.4%)	G: 633 (93.6%)	3 (0.9%)	37 (10.9%)	298 (88.2%)
Caucasian	Greece – Athens	PD	T: 21 (7.9%)	G: 245 (92.1%)	2 (1.5%)	17 (12.8%)	114 (85.7%)
Caucasian	Greece – Athens	Controls	T: 8 (4.4%)	G: 174 (95.6%)	0 (0.0%)	8 (8.8%)	83 (91.2%)
Caucasian	Greece – Thessaly	PD	T: 58 (9.3%)	G: 564 (90.7%)	0 (0.0%)	58 (18.6%)	253 (81.4%)
Caucasian	Greece – Thessaly	Controls	T: 52 (8.4%)	G: 566 (91.6%)	2 (0.6%)	48 (15.5%)	259 (83.8%)
Caucasian	Ireland – Dublin	PD	T: 68 (9.5%)	G: 646 (90.5%)	2 (0.6%)	64 (17.9%)	291 (81.5%)
Caucasian	Ireland – Dublin	Controls	T: 55 (6.2%)	G: 831 (93.8%)	3 (0.7%)	49 (11.1%)	391 (88.3%)
Caucasian	Italy – Mangone	PD	T: 26 (7.1%)	G: 342 (92.9%)	0 (0.0%)	26 (14.1%)	158 (85.9%)
Caucasian	Italy – Mangone	Controls	T: 28 (8.3%)	G: 308 (91.7%)	1 (0.6%)	26 (15.5%)	141 (83.9%)
Caucasian	Italy – Milan	PD	T: 25 (13.2%)	G: 165 (86.8%)	2 (2.1%)	21 (22.1%)	72 (75.8%)
Caucasian	Italy – Milan	Controls	T: 12 (6.0%)	G: 188 (94.0%)	0 (0.0%)	12 (12.0%)	88 (88.0%)
Caucasian	Italy – Rome	PD	T: 38 (10.2%)	G: 336 (89.8%)	3 (1.6%)	32 (17.1%)	152 (81.3%)
Caucasian	Italy – Rome	Controls	T: 14 (7.5%)	G: 172 (92.5%)	0 (0.0%)	14 (15.1%)	79 (84.9%)
Caucasian	Norway – Trondheim	PD	T: 136 (11.5%)	G: 1046 (88.5%)	5 (0.8%)	126 (21.3%)	460 (77.8%)
Caucasian	Norway – Trondheim	Controls	T: 82 (7.9%)	G: 956 (92.1%)	2 (0.4%)	78 (15.0%)	439 (84.6%)
Caucasian	Poland - Katowice	PD	T: 53 (7.6%)	G: 641 (92.4%)	2 (0.6%)	49 (14.1%)	296 (85.3%)
Caucasian	Poland - Katowice	Controls	T: 45 (6.6%)	G: 633 (93.4%)	3 (0.9%)	39 (11.5%)	297 (87.6%)
Caucasian	Sweden – Stockholm	PD	T: 18 (10.0%)	G: 162 (90.0%)	0 (0.0%)	18 (20.0%)	72 (80.0%)
Caucasian	Sweden – Stockholm	Controls	T: 28 (7.8%)	G: 332 (92.2%)	0 (0.0%)	28 (15.6%)	152 (84.4%)
Caucasian	United States - Jacksonville, FL	PD	T: 76 (10.1%)	G: 676 (89.9%)	3 (0.8%)	70 (18.6%)	303 (80.6%)
Caucasian	United States - Jacksonville, FL	Controls	T: 55 (7.6%)	G: 669 (92.4%)	4 (1.1%)	47 (13.0%)	311 (85.9%)
Caucasian	United States - Rochester, MN	PD	T: 136 (9.1%)	G: 1358 (90.9%)	5 (0.7%)	126 (16.9%)	616 (82.5%)
Caucasian	United States - Rochester, MN	Controls	T: 24 (6.9%)	G: 326 (93.1%)	1 (0.6%)	22 (12.6%)	152 (86.9%)
Asian	Japan – Tokyo	PD	G: 112 (33.1%)	T: 226 (66.9%)	19 (11.2%)	74 (43.8%)	76 (45.0%)
Asian	Japan – Tokyo	Controls	G: 86 (47.8%)	T: 94 (52.2%)	20 (22.2%)	46 (51.1%)	24 (26.7%)
Asian	Korea - Anyang Hallym	PD	G: 117 (39.8%)	T: 177 (60.2%)	26 (17.7%)	65 (44.2%)	56 (38.1%)
Asian	Korea - Anyang Hallym	Controls	G: 136 (47.9%)	T: 148 (52.1%)	33 (23.2%)	70 (49.3%)	39 (27.5%)
Asian	Korea – Seoul	PD	G: 486 (36.8%)	T: 836 (63.2%)	81 (12.3%)	324 (49.0%)	256 (38.7%)
Asian	Korea – Seoul	Controls	G: 367 (45.4%)	T: 441 (54.6%)	90 (22.3%)	187 (46.3%)	127 (31.4%)
Asian	Taiwan – Taipei	PD	G: 297 (40.4%)	T: 439 (59.6%)	58 (15.8%)	181 (49.2%)	129 (35.1%)
Asian	Taiwan - Taipei	Controls	G: 279 (47.0%)	T: 315 (53.0%)	65 (21.9%)	149 (50.2%)	83 (27.9%)

Supplementary Table 3e: Genotype counts and frequencies for SNCA rs2583988 for each site

a .		D.			Minor-Minor genotype	Heterozygous	Major-Major
Series	Country/Site	Disease group	Minor allele count, %	Major allele count, %	count, %	count, %	count, %
Caucasian	Australia – Queensland	PD	T: 522 (28.5%)	C: 1310 (71.5%)	70 (7.6%)	382 (41.7%)	464 (50.7%)
Caucasian	Australia – Queensland	Controls	T: 388 (27.6%)	C: 1018 (72.4%)	56 (8.0%)	276 (39.3%)	371 (52.8%)
Caucasian	France – Lille	PD	T: 348 (31.8%)	C: 746 (68.2%)	53 (9.7%)	242 (44.2%)	252 (46.1%)
Caucasian	France – Lille	Controls	T: 77 (26.9%)	C: 209 (73.1%)	8 (5.6%)	61 (42.7%)	74 (51.7%)
Caucasian	Germany – Frankfurt	PD	T: 135 (29.3%)	C: 325 (70.7%)	18 (7.8%)	99 (43.0%)	113 (49.1%)
Caucasian	Germany – Frankfurt	Controls	T: 29 (32.2%)	C: 61 (67.8%)	6 (13.3%)	17 (37.8%)	22 (48.9%)
Caucasian	Germany – Luebeck	PD	T: 345 (33.8%)	C: 677 (66.2%)	70 (13.7%)	205 (40.1%)	236 (46.2%)
Caucasian	Germany – Luebeck	Controls	T: 147 (25.5%)	C: 429 (74.5%)	22 (7.6%)	103 (35.8%)	163 (56.6%)
Caucasian	Germany – Tuebingen	PD	T: 195 (29.5%)	C: 465 (70.5%)	32 (9.7%)	131 (39.7%)	167 (50.6%)
Caucasian	Germany – Tuebingen	Controls	T: 180 (26.6%)	C: 496 (73.4%)	21 (6.2%)	138 (40.8%)	179 (53.0%)
Caucasian	Greece – Athens	PD	T: 81 (30.7%)	C: 183 (69.3%)	9 (6.8%)	63 (47.7%)	60 (45.5%)
Caucasian	Greece – Athens	Controls	T: 56 (29.8%)	C: 132 (70.2%)	9 (9.6%)	38 (40.4%)	47 (50.0%)
Caucasian	Greece – Thessaly	PD	T: 194 (31.4%)	C: 424 (68.6%)	35 (11.3%)	124 (40.1%)	150 (48.5%)
Caucasian	Greece – Thessaly	Controls	T: 164 (27.2%)	C: 438 (72.8%)	25 (8.3%)	114 (37.9%)	162 (53.8%)
Caucasian	Ireland – Dublin	PD	T: 233 (33.8%)	C: 457 (66.2%)	38 (11.0%)	157 (45.5%)	150 (43.5%)
Caucasian	Ireland – Dublin	Controls	T: 222 (25.7%)	C: 642 (74.3%)	33 (7.6%)	156 (36.1%)	243 (56.2%)
Caucasian	Italy – Mangone	PD	T: 116 (31.5%)	C: 252 (68.5%)	17 (9.2%)	82 (44.6%)	85 (46.2%)
Caucasian	Italy – Mangone	Controls	T: 74 (22.0%)	C: 262 (78.0%)	7 (4.2%)	60 (35.7%)	101 (60.1%)
Caucasian	Italy – Milan	PD	T: 52 (27.7%)	C: 136 (72.3%)	5 (5.3%)	42 (44.7%)	47 (50.0%)
Caucasian	Italy – Milan	Controls	T: 48 (23.5%)	C: 156 (76.5%)	7 (6.9%)	34 (33.3%)	61 (59.8%)
Caucasian	Italy – Rome	PD	T: 113 (29.9%)	C: 265 (70.1%)	18 (9.5%)	77 (40.7%)	94 (49.7%)
Caucasian	Italy – Rome	Controls	T: 44 (23.2%)	C: 146 (76.8%)	5 (5.3%)	34 (35.8%)	56 (58.9%)
Caucasian	Norway – Trondheim	PD	T: 367 (30.5%)	C: 835 (69.5%)	74 (12.3%)	219 (36.4%)	308 (51.2%)
Caucasian	Norway – Trondheim	Controls	T: 333 (31.7%)	C: 719 (68.3%)	57 (10.8%)	219 (41.6%)	250 (47.5%)
Caucasian	Poland - Katowice	PD	T: 195 (28.0%)	C: 501 (72.0%)	33 (9.5%)	129 (37.1%)	186 (53.4%)
Caucasian	Poland - Katowice	Controls	T: 155 (23.1%)	C: 517 (76.9%)	27 (8.0%)	101 (30.1%)	208 (61.9%)
Caucasian	Sweden – Stockholm	PD	T: 47 (25.8%)	C: 135 (74.2%)	5 (5.5%)	37 (40.7%)	49 (53.8%)
Caucasian	Sweden – Stockholm	Controls	T: 89 (24.9%)	C: 269 (75.1%)	15 (8.4%)	59 (33.0%)	105 (58.7%)
Caucasian	United States - Jacksonville, FL	PD	T: 246 (32.6%)	C: 508 (67.4%)	40 (10.6%)	166 (44.0%)	171 (45.4%)
Caucasian	United States - Jacksonville, FL	Controls	T: 168 (23.3%)	C: 554 (76.7%)	22 (6.1%)	124 (34.3%)	215 (59.6%)
Caucasian	United States - Rochester, MN	PD	T: 431 (29.8%)	C: 1015 (70.2%)	76 (10.5%)	279 (38.6%)	368 (50.9%)
Caucasian	United States - Rochester, MN	Controls	T: 96 (27.3%)	C: 256 (72.7%)	13 (7.4%)	70 (39.8%)	93 (52.8%)
Asian	Japan – Tokyo	PD	T: 0 (0.0%)	C: 340 (100.0%)	0 (0.0%)	0 (0.0%)	170 (100.0%)
Asian	Japan – Tokyo	Controls	T: 0 (0.0%)	C: 178 (100.0%)	0 (0.0%)	0 (0.0%)	89 (100.0%)
Asian	Korea - Anyang Hallym	PD	T: 0 (0.0%)	C: 294 (100.0%)	0 (0.0%)	0 (0.0%)	147 (100.0%)
Asian	Korea - Anyang Hallym	Controls	T: 0 (0.0%)	C: 284 (100.0%)	0 (0.0%)	0 (0.0%)	142 (100.0%)
Asian	Korea – Seoul	PD	T: 0 (0.0%)	C: 1302 (100.0%)	0 (0.0%)	0 (0.0%)	651 (100.0%)
Asian	Korea – Seoul	Controls	T: 0 (0.0%)	C: 802 (100.0%)	0 (0.0%)	0 (0.0%)	401 (100.0%)
Asian	Taiwan – Taipei	PD	T: 0 (0.0%)	C: 724 (100.0%)	0 (0.0%)	0 (0.0%)	362 (100.0%)
Asian	Taiwan – Taipei	Controls	T: 1 (0.2%)	C: 587 (99.8%)	0 (0.0%)	1 (0.3%)	293 (99.7%)

Supplementary Table 3f: Genotype counts and frequencies for LRRK2 p.R1398H for each site

Series	Country/Site	Disease group	Minor allele count %	Maior allele count %	Minor-Minor genotype	Heterozygous	Major-Major
Berles	Country/Site	Disease group	While anote count, 70	Major ancie count, //	count, %	count, %	count, %
Caucasian	Australia - Queensland	PD	A: 109 (5.9%)	G: 1729 (94.1%)	6 (0.7%)	97 (10.6%)	816 (88.8%)
Caucasian	Australia - Queensland	Controls	A: 104 (7.3%)	G: 1316 (92.7%)	5 (0.7%)	94 (13.2%)	611 (86.1%)
Caucasian	France - Lille	PD	A: 48 (4.4%)	G: 1034 (95.6%)	3 (0.6%)	42 (7.8%)	496 (91.7%)
Caucasian	France - Lille	Controls	A: 12 (4.3%)	G: 270 (95.7%)	0 (0.0%)	12 (8.5%)	129 (91.5%)
Caucasian	Germany - Frankfurt	PD	A: 20 (4.4%)	G: 438 (95.6%)	1 (0.4%)	18 (7.9%)	210 (91.7%)
Caucasian	Germany - Frankfurt	Controls	A: 5 (5.3%)	G: 89 (94.7%)	0 (0.0%)	5 (10.6%)	42 (89.4%)
Caucasian	Germany - Luebeck	PD	A: 62 (6.1%)	G: 958 (93.9%)	4 (0.8%)	54 (10.6%)	452 (88.6%)
Caucasian	Germany - Luebeck	Controls	A: 52 (9.2%)	G: 516 (90.8%)	0 (0.0%)	52 (18.3%)	232 (81.7%)
Caucasian	Germany - Tuebingen	PD	A: 46 (7.0%)	G: 608 (93.0%)	2 (0.6%)	42 (12.8%)	283 (86.5%)
Caucasian	Germany - Tuebingen	Controls	A: 51 (7.5%)	G: 627 (92.5%)	1 (0.3%)	49 (14.5%)	289 (85.3%)
Caucasian	Greece - Athens	PD	A: 7 (2.6%)	G: 259 (97.4%)	0 (0.0%)	7 (5.3%)	126 (94.7%)
Caucasian	Greece - Athens	Controls	A: 7 (3.8%)	G: 179 (96.2%)	0 (0.0%)	7 (7.5%)	86 (92.5%)
Caucasian	Greece - Thessaly	PD	A: 27 (4.3%)	G: 601 (95.7%)	0 (0.0%)	27 (8.6%)	287 (91.4%)
Caucasian	Greece - Thessaly	Controls	A: 35 (6.0%)	G: 553 (94.0%)	0 (0.0%)	35 (11.9%)	259 (88.1%)
Caucasian	Ireland - Dublin	PD	A: 39 (5.5%)	G: 673 (94.5%)	4 (1.1%)	31 (8.7%)	321 (90.2%)
Caucasian	Ireland - Dublin	Controls	A: 73 (8.2%)	G: 815 (91.8%)	3 (0.7%)	67 (15.1%)	374 (84.2%)
Caucasian	Italy - Mangone	PD	A: 26 (7.2%)	G: 336 (92.8%)	1 (0.6%)	24 (13.3%)	156 (86.2%)
Caucasian	Italy - Mangone	Controls	A: 24 (7.2%)	G: 310 (92.8%)	0 (0.0%)	24 (14.4%)	143 (85.6%)
Caucasian	Italy - Milan	PD	A: 11 (6.0%)	G: 171 (94.0%)	0 (0.0%)	11 (12.1%)	80 (87.9%)
Caucasian	Italy - Milan	Controls	A: 8 (4.1%)	G: 186 (95.9%)	0 (0.0%)	8 (8.2%)	89 (91.8%)
Caucasian	Italy - Rome	PD	A: 20 (5.5%)	G: 346 (94.5%)	0 (0.0%)	20 (10.9%)	163 (89.1%)
Caucasian	Italy - Rome	Controls	A: 13 (6.9%)	G: 175 (93.1%)	0 (0.0%)	13 (13.8%)	81 (86.2%)
Caucasian	Norway - Trondheim	PD	A: 102 (8.5%)	G: 1094 (91.5%)	0 (0.0%)	102 (17.1%)	496 (82.9%)
Caucasian	Norway - Trondheim	Controls	A: 83 (8.0%)	G: 961 (92.0%)	3 (0.6%)	77 (14.8%)	442 (84.7%)
Caucasian	Poland - Katowice	PD	A: 43 (6.2%)	G: 655 (93.8%)	1 (0.3%)	41 (11.7%)	307 (88.0%)
Caucasian	Poland - Katowice	Controls	A: 42 (6.2%)	G: 638 (93.8%)	2 (0.6%)	38 (11.2%)	300 (88.2%)
Caucasian	Sweden - Stockholm	PD	A: 15 (8.4%)	G: 163 (91.6%)	2 (2.2%)	11 (12.4%)	76 (85.4%)
Caucasian	Sweden - Stockholm	Controls	A: 36 (10.5%)	G: 308 (89.5%)	1 (0.6%)	34 (19.8%)	137 (79.7%)
Caucasian	United States - Jacksonville, FL	PD	A: 65 (8.8%)	G: 675 (91.2%)	4 (1.1%)	57 (15.4%)	309 (83.5%)
Caucasian	United States - Jacksonville, FL	Controls	A: 52 (7.2%)	G: 674 (92.8%)	0 (0.0%)	52 (14.3%)	311 (85.7%)
Caucasian	United States - Rochester, MN	PD	A: 102 (7.2%)	G: 1306 (92.8%)	2 (0.3%)	98 (13.9%)	604 (85.8%)
Caucasian	United States - Rochester, MN	Controls	A: 20 (5.7%)	G: 330 (94.3%)	0 (0.0%)	20 (11.4%)	155 (88.6%)
Asian	Japan - Tokyo	PD	A: 39 (11.4%)	G: 303 (88.6%)	4 (2.3%)	31 (18.1%)	136 (79.5%)
Asian	Japan - Tokyo	Controls	A: 16 (9.0%)	G: 162 (91.0%)	0 (0.0%)	16 (18.0%)	73 (82.0%)
Asian	Korea - Anyang Hallym	PD	A: 40 (13.4%)	G: 258 (86.6%)	5 (3.4%)	30 (20.1%)	114 (76.5%)
Asian	Korea - Anyang Hallym	Controls	A: 46 (16%)	G: 242 (84.0%)	1 (0.7%)	44 (30.6%)	99 (68.8%)
Asian	Korea - Seoul	PD	A: 142 (10.8%)	G: 1172 (89.2%)	9 (1.4%)	124 (18.9%)	524 (79.8%)
Asian	Korea - Seoul	Controls	A: 117 (14.5%)	G: 689 (85.5%)	6 (1.5%)	105 (26.1%)	292 (72.5%)
Asian	Taiwan - Taipei	PD	A: 63 (8.6%)	G: 673 (91.4%)	5 (1.4%)	53 (14.4%)	310 (84.2%)
Asian	Taiwan - Taipei	Controls	A: 60 (10.2%)	G: 530 (89.8%)	2 (0.7%)	56 (19.0%)	237 (80.3%)

Supplementary Table 3g: Genotype counts and frequencies for *MAPT* rs1052553 for each site

a .		D.			Minor-Minor genotype	Heterozygous	Major-Major
Series	Country/Site	Disease group	Minor allele count, %	Major allele count, %	count, %	count, %	count, %
Caucasian	Australia - Queensland	PD	G: 360 (19.5%)	A: 1486 (80.5%)	41 (4.4%)	278 (30.1%)	604 (65.4%)
Caucasian	Australia - Queensland	Controls	G: 344 (24.1%)	A: 1082 (75.9%)	40 (5.6%)	264 (37.0%)	409 (57.4%)
Caucasian	France - Lille	PD	G: 223 (20.3%)	A: 873 (79.7%)	31 (5.7%)	161 (29.4%)	356 (65.0%)
Caucasian	France - Lille	Controls	G: 59 (20.6%)	A: 227 (79.4%)	7 (4.9%)	45 (31.5%)	91 (63.6%)
Caucasian	Germany - Frankfurt	PD	G: 70 (15.1%)	A: 394 (84.9%)	4 (1.7%)	62 (26.7%)	166 (71.6%)
Caucasian	Germany - Frankfurt	Controls	G: 16 (17.0%)	A: 78 (83.0%)	0 (0.0%)	16 (34.0%)	31 (66.0%)
Caucasian	Germany - Luebeck	PD	G: 172 (16.8%)	A: 852 (83.2%)	18 (3.5%)	136 (26.6%)	358 (69.9%)
Caucasian	Germany - Luebeck	Controls	G: 110 (19.0%)	A: 468 (81.0%)	14 (4.8%)	82 (28.4%)	193 (66.8%)
Caucasian	Germany - Tuebingen	PD	G: 113 (17.1%)	A: 547 (82.9%)	9 (2.7%)	95 (28.8%)	226 (68.5%)
Caucasian	Germany - Tuebingen	Controls	G: 134 (19.8%)	A: 544 (80.2%)	14 (4.1%)	106 (31.3%)	219 (64.6%)
Caucasian	Greece - Athens	PD	G: 37 (13.8%)	A: 231 (86.2%)	3 (2.2%)	31 (23.1%)	100 (74.6%)
Caucasian	Greece - Athens	Controls	G: 37 (19.7%)	A: 151 (80.3%)	5 (5.3%)	27 (28.7%)	62 (66.0%)
Caucasian	Greece - Thessaly	PD	G: 121 (19.1%)	A: 511 (80.9%)	12 (3.8%)	97 (30.7%)	207 (65.5%)
Caucasian	Greece - Thessaly	Controls	G: 117 (18.8%)	A: 505 (81.2%)	11 (3.5%)	95 (30.5%)	205 (65.9%)
Caucasian	Ireland - Dublin	PD	G: 115 (16.0%)	A: 605 (84.0%)	12 (3.3%)	91 (25.3%)	257 (71.4%)
Caucasian	Ireland - Dublin	Controls	G: 196 (22.1%)	A: 692 (77.9%)	23 (5.2%)	150 (33.8%)	271 (61.0%)
Caucasian	Italy - Mangone	PD	G: 86 (23.2%)	A: 284 (76.8%)	8 (4.3%)	70 (37.8%)	107 (57.8%)
Caucasian	Italy - Mangone	Controls	G: 84 (25.0%)	A: 252 (75.0%)	10 (6.0%)	64 (38.1%)	94 (56.0%)
Caucasian	Italy - Milan	PD	G: 38 (20.0%)	A: 152 (80.0%)	4 (4.2%)	30 (31.6%)	61 (64.2%)
Caucasian	Italy - Milan	Controls	G: 60 (29.4%)	A: 144 (70.6%)	16 (15.7%)	28 (27.5%)	58 (56.9%)
Caucasian	Italy - Rome	PD	G: 91 (24.1%)	A: 287 (75.9%)	15 (7.9%)	61 (32.3%)	113 (59.8%)
Caucasian	Italy – Rome	Controls	G: 49 (25.8%)	A: 141 (74.2%)	5 (5.3%)	39 (41.1%)	51 (53.7%)
Caucasian	Norway - Trondheim	PD	G: 179 (14.9%)	A: 1025 (85.1%)	16 (2.7%)	147 (24.4%)	439 (72.9%)
Caucasian	Norway - Trondheim	Controls	G: 191 (18.2%)	A: 861 (81.8%)	18 (3.4%)	155 (29.5%)	353 (67.1%)
Caucasian	Poland – Katowice	PD	G: 95 (13.6%)	A: 603 (86.4%)	6 (1.7%)	83 (23.8%)	260 (74.5%)
Caucasian	Poland – Katowice	Controls	G: 100 (14.7%)	A: 580 (85.3%)	15 (4.4%)	70 (20.6%)	255 (75.0%)
Caucasian	Sweden – Stockholm	PD	G: 27 (14.8%)	A: 155 (85.2%)	2 (2.2%)	23 (25.3%)	66 (72.5%)
Caucasian	Sweden – Stockholm	Controls	G: 51 (14.2%)	A: 309 (85.8%)	3 (1.7%)	45 (25.0%)	132 (73.3%)
Caucasian	United States - Jacksonville, FL	PD	G: 143 (19.0%)	A: 611 (81.0%)	15 (4.0%)	113 (30.0%)	249 (66.0%)
Caucasian	United States - Jacksonville, FL	Controls	G: 173 (23.8%)	A: 555 (76.2%)	20 (5.5%)	133 (36.5%)	211 (58.0%)
Caucasian	United States - Rochester, MN	PD	G: 241 (16.1%)	A: 1255 (83.9%)	22 (2.9%)	197 (26.3%)	529 (70.7%)
Caucasian	United States - Rochester, MN	Controls	G: 73 (20.7%)	A: 279 (79.3%)	10 (5.7%)	53 (30.1%)	113 (64.2%)
Asian	Japan – Tokyo	PD	G: 0 (0.0%)	A: 338 (100.0%)	0 (0.0%)	0 (0.0%)	169 (100.0%)
Asian	Japan – Tokyo	Controls	G: 0 (0.0%)	A: 178 (100.0%)	0 (0.0%)	0 (0.0%)	89 (100.0%)
Asian	Korea - Anyang Hallym	PD	G: 1 (0.4%)	A: 281 (99.6%)	0 (0.0%)	1 (0.7%)	140 (99.3%)
Asian	Korea - Anyang Hallym	Controls	G: 0 (0.0%)	A: 270 (100.0%)	0 (0.0%)	0 (0.0%)	135 (100.0%)
Asian	Korea – Seoul	PD	G: 1 (0.1%)	A: 1269 (99.9%)	0 (0.0%)	1 (0.2%)	634 (99.8%)
Asian	Korea – Seoul	Controls	G: 0 (0.0%)	A: 810 (100.0%)	0 (0.0%)	0 (0.0%)	405 (100.0%)
Asian	Taiwan – Taipei	PD	G: 3 (0.4%)	A: 727 (99.6%)	0 (0.0%)	3 (0.8%)	362 (99.2%)
Asian	Taiwan – Taipei	Controls	G: 0 (0.0%)	A: 594 (100.0%)	0 (0.0%)	0 (0.0%)	297 (100.0%)

	Caucasian ser	ries (5991 PD, 4331 c	controls)	ols) Asian series (1351 PD, 938 controls)			
Variant & Genotype/Model	Sample Frequency	OR (95% CI)	P-value	Sample Frequency	OR (95% CI)	P-value	
SNCA rs181489	· ·			<u> </u>			
Genotype							
CC	46.0%	1.00 (reference)					
СТ	42.8%	1.16 (1.06 - 1.26)	0.0012				
TT	11.2%	1.67 (1.45 - 1.92)	1.4E-12				
Additive		1.24 (1.17 - 1.32)	6.7E-12				
Dominant	MAF: 32.6%	1.25 (1.15 - 1.35)	2.1E-7				
Recessive		1.56 (1.36 - 1.78)	1.5E-10				
<i>SNCA</i> rs356219 ¹							
Genotype							
AA	35.2%	1.00 (reference)		16.7%	1.00 (reference)		
AG	47.9%	1.17 (1.07 - 1.28)	7.0E-4	47.7%	1.66 (1.30 - 2.11)	4.0E-5	
GG	16.9%	1.50 (1.33 - 1.70)	6.9E-11	35.5%	2.26 (1.75 - 2.92)	3.4E-10	
Additive		1.21 (1.15 - 1.29)	9.1E-11		1.48 (1.31 - 1.68)	5.9E-10	
Dominant	MAF: 40.8%	1.25 (1.15 - 1.36)	3.9E-7	MAF: 40.6%	1.88 (1.50 - 2.37)	4.5E-08	
Recessive		1.37 (1.23 - 1.53)	2.0E-8		1.56 (1.30 - 1.87)	1.9E-06	
<i>SNCA</i> rs11931074 ¹		· · · · ·					
Genotype							
GG	84.1%	1.00 (reference)		17.2%	1.00 (reference)		
GT	15.1%	1.37 (1.22 - 1.54)	1.0E-7	48.1%	1.59 (1.26 - 2.01)	9.5E-5	
TT	0.7%	1.38 (0.84 - 2.30)	0.21	34.7%	2.09 (1.63 - 2.68)	5.1E-9	
Additive		1.34 (1.20 - 1.49)	1.1E-7		1.43 (1.26 - 1.61)	9.7E-9	
Dominant	MAF: 8.3%	1.37 (1.22 - 1.53)	5.7E-8	MAF: 41.3%	1.78 (1.43 - 2.22)	2.8E-7	
Recessive		1.31 (0.80 - 2.17)	0.28		1.49 (1.25 - 1.78)	1.4E-5	
<i>SNCA</i> rs2583988 ¹		, ,			· · · · ·		
Genotype							
CC	51.4%	1.00 (reference)					
СТ	39.5%	1.22 (1.12 - 1.33)	7.70E-6				
TT	9.1%	1.43 (1.24 - 1.67)	2.20E-6				
Additive		1.21 (1.13 - 1.28)	5.9E-9				
Dominant	MAF: 28.8%	1.25 (1.16 - 1.36)	5.0E-8				
Recessive		1.32 (1.14 - 1.52)	1E-4				
MAPT rs1052553							
Genotype ²							
GG	4.2%	1.00 (reference)					
GA	29.5%	1.21 (0.98 - 1.49)	0.077				
AA	66.3%	1.49 (1.22 - 1.82)	0.00012				
Additive		1.23 (1.14 - 1.32)	2.2E-8				
Dominant	MAF: 18.9%	1.39 (1.14 - 1.70)	0.0012				
Recessive		1.26 (1.16 - 1.37)	1.09E-7				
LRRK2 p.R1398H							
Dominant	MAF: 6.7%			MAF: 11.5%			
GG	87.1%	1.00 (reference)		78.4%	1.00 (reference)		
GA/AA	12.5%	0.87(0.78 - 0.99)	0.028	21.6%	0.73(0.60 - 0.90)	0.0026	

Supplementary Table 4: Single variant associations with PD

ORs and p-values result from fixed-effects logistic regression models adjusted for site. For genotype models, ORs and p-values are given in comparison to the reference category of homozygotes of the major allele (*SNCA*, *LRRK2*) or minor allele (*MAPT*). For additive models, ORs and p-values correspond to an additional minor allele (*SNCA*, *LRRK2*) or major allele (*MAPT*). For dominant models, ORs and p-values correspond to presence of the minor allele (*SNCA*, *LRRK2*) or major allele (*MAPT*). For dominant models, ORs and p-values correspond to presence of the minor allele (*SNCA*, *LRRK2*) or major allele (*MAPT*). For dominant models, ORs and p-values correspond to presence of two copies of the minor allele (*SNCA*, *LRRK2*) or major allele (*MAPT*). For recessive models, ORs and p-values correspond to presence of two copies of the minor allele (*SNCA*, *LRRK2*) or major allele (*MAPT*). ¹The minor allele differed between the Caucasian and Asian series' for *SNCA* rs356219 and rs11931074; for easier interpretation of results, odds ratio estimates for these two *SNCA* variants correspond to the minor allele in the overall patient-control series of Caucasian and Asian individuals (rs356219: G; rs11931074: T), which is the major allele in the smaller Asian series. ²The A allele for *MAPT* rs1052553 corresponds to the H1 haplotype. OR=odds ratio. CI=confidence interval. MAF=minor allele frequency. --- indicates a variant observed at a frequency too low in the given series to allow for association analysis.

		Test of association					
Variant/Genotype	LRRK2 p.R1398H	Sample genotype count and frequency	OR (95% CI)	P-value	Test of interaction		
SNCA rs181489							
CC	GG	3908 (39.9%)	1.00 (reference)	N/A	OP: 1.12		
CC	GA or AA	599 (6.1%)	0.82 (0.69 - 0.98)	0.030	OK. 1.13		
CT or TT	GG	4603 (47.0%)	1.23 (1.12 - 1.34)	6.3E-06	93% CI. 0.88 - 1.44 P=0.23		
CT or TT	GA or AA	678 (6.9%)	1.14 (0.96 - 1.35)	0.13	1-0.33		
SNCA rs356219							
AA	GG	3087 (30.9%)	1.00 (reference)	N/A	$OP \cdot 1.00$		
AA	GA or AA	440 (4.4%)	0.82 (0.67 - 1.01)	0.060	OK. 1.09		
AG or GG	GG	5618 (56.2%)	1.23 (1.12 - 1.35)	9.0E-06	P=0.40		
AG or GG	GA or AA	847 (8.5%)	1.10 (0.94 - 1.29)	0.22	F=0.49		
SNCA rs11931074							
GG	GG	7443 (73.6%)	1.00 (reference)	N/A	OP: 1 12		
GG	GA or AA	1061 (10.5%)	0.85 (0.74 - 0.97)	0.017	OK. 1.12		
GT or TT	GG	1359 (13.4%)	1.34 (1.18 - 1.52)	3.4E-06	P=0.50		
GT or TT	GA or AA	244 (2.4%)	1.27 (0.97 - 1.67)	0.080	1-0.50		
SNCA rs2583988							
CC	GG	4495 (44.6%)	1.00 (reference)	N/A	OP: 1 13		
CC	GA or AA	677 (6.7%)	0.82 (0.69 - 0.97)	0.019	0 CI: 0.80 1.44		
CT or TT	GG	4280 (42.5%)	1.24 (1.13 - 1.35)	2.2E-06	93% CI. 0.89 - 1.44		
CT or TT	GA or AA	617 (6.1%)	1.14 (0.96 - 1.36)	0.13	F=0.32		
$MAPT rs1052553^1$							
GG	GG	364 (3.6%)	1.00 (reference)	N/A	OP: 1.65		
GG	GA or AA	58 (0.6%)	0.54 (0.03 - 0.97)	0.040	0 CI: 0.01 2.05		
GA or AA	GG	8498 (83.5%)	1.27 (1.02 - 1.58)	0.029	75% CI. 0.91 - 5.05 D=0.10		
GA or AA	GA or AA	1256 (12.3%)	1.14 (0.89 - 1.45)	0.29	r-0.10		

Supplementary Table 5: Interactions of LRRK2 p.R1398H with SNCA and MAPT variants in regard to susceptibility to PD in the Caucasian series under a dominant model

ORs and p-values result from fixed-effects logistic regression models. For tests of association, the two given variants were combined into one variable, and the model was adjusted for site. For tests of interaction, models were adjusted for each of the two variants, their interaction, and site. Dominant models refer to the characterization of *SNCA* and *MAPT* variants; only dominant models were considered for LRRK2 p.R1398H due to the small number of rare homozygotes for this variant. Interaction ORs under a dominant model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to presence of the risk allele for *SNCA* and *MAPT* variants, or alternatively as the multiplicative increase in the effect of presence of the risk allele for *SNCA* and *MAPT* variants on PD corresponding to presence of the minor allele for LRRK2 p.R1398H. OR=odds ratio. CI=confidence interval. ¹The A allele for *MAPT* rs1052553 corresponds to the H1 haplotype.

		Test of association				
Variant/Genotype	LRRK2 p.R1398H	Sample genotype count and frequency	OR (95% CI)	P-value	Test of interaction	
SNCA rs181489						
CC or CT	GG	7544 (77.1%)	1.00 (reference)	N/A		
CC or CT	GA or AA	1141 (11.7%)	0.88 (0.77 - 1.00)	0.051	OR: 0.96	
TT	GG	967 (9.9%)	1.55 (1.34 - 1.79)	4.0E-9	95% CI: 0.65 - 1.44 P=0.86	
TT	GA or AA	136 (1.4%)	1.31 (0.93 - 1.88)	0.13		
SNCA rs356219						
AA or AG	GG	7229 (72.3%)	1.00 (reference)	N/A		
AA or AG	GA or AA	1068 (10.7%)	0.90 (0.79 - 1.03)	0.14	OR: 0.80	
GG	GG	1476 (14.8%)	1.40 (1.24 - 1.58)	3.5E-8	95% CI: 0.58 - 1.11 P=0.18	
GG	GA or AA	219 (2.2%)	1.02 (0.77 - 1.34)	0.91		
SNCA rs11931074						
GG or GT	GG	8743 (86.5%)	1.00 (reference)	N/A	OB: 0.52	
GG or GT	GA or AA	1293 (12.8%)	0.88 (0.78 - 0.99)	0.039	OK: 0.52	
TT	GG	59 (0.6%)	1.41 (0.81 - 2.52)	0.24	93% CI: 0.14 - 1.90 D=0.22	
TT	GA or AA	12 (0.1%)	0.64 (0.19 - 2.14)	0.46	P=0.55	
SNCA rs2583988						
CC or CT	GG	7975 (79.2%)	1.00 (reference)	N/A		
CC or CT	GA or AA	1177 (11.7%)	0.87 (0.76 - 0.98)	0.027	OR: 0.99	
TT	GG	800 (7.9%)	1.31 (1.13 - 1.54)	0.0006	95% CI: 0.65 - 1.52 P=0.97	
TT	GA or AA	117 (1.2%)	1.13 (0.78 - 1.66)	0.53		
<i>MAPT</i> rs1052553 ¹						
GG or GA	GG	2981 (29.3%)	1.00 (reference)	N/A	OB: 0.08	
GG or GA	GA or AA	456 (4.5%)	0.89 (0.72 - 1.09)	0.25	UK: 0.90	
AA	GG	5881 (57.8%)	1.25 (1.14 - 1.38)	1.55E-06	95% CI: 0.70 - 1.20 D=0.99	
AA	GA or AA	858 (8.4%)	1.09 (0.93 - 1.28)	0.28	P=0.88	

Supplementary Table 6: Interactions of LRRK2 p.R1398H with SNCA and MAPT variants in regard to susceptibility to PD in the Caucasian series under a recessive model

ORs and p-values result from fixed-effects logistic regression models. For tests of association, the two given variants were combined into one variable, and the model was adjusted for site. For tests of interaction, models were adjusted for each of the two variants, their interaction, and site. Recessive models refer to the characterization of *SNCA* and *MAPT* variants; only dominant models were considered for LRRK2 p.R1398H due to the small number of rare homozygotes for this variant. Interaction ORs under a recessive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to presence of two risk alleles for *SNCA* and *MAPT* variants, or alternatively as the multiplicative increase in the effect presence of two risk alleles for *SNCA* and *MAPT* variants on PD corresponding to presence of the minor allele for LRRK2 p.R1398H. OR=odds ratio. CI=confidence interval. ¹The A allele for *MAPT* rs1052553 corresponds to the H1 haplotype.

	Caucasian series		Asian series		
Interaction between LRRK2 p.R1398H and:	Interaction OR (95% CI)	P-value	Interaction OR (95% CI)	P-value	
SNCA rs181489					
Additive model	1.06 (0.88 - 1.28)	0.54			
Dominant model	1.12 (0.87 – 1.44)	0.36			
Recessive model	0.97 (0.65 – 1.46)	0.88			
Genotype model ¹	NA	0.12			
SNCA rs356219					
Additive model	0.96 (0.80 - 1.15)	0.64	0.94 (0.65 – 1.33)	0.72	
Dominant model	1.06 (0.82 - 1.38)	0.64	0.95 (0.56 – 1.59)	0.84	
Recessive model	0.78 (0.56 - 1.09)	0.14	0.90 (0.47 – 1.72)	0.76	
Genotype model ¹	NA	0.34	NA	0.96	
SNCA rs11931074			\mathbf{C}		
Additive model	1.03 (0.76 – 1.39)	0.87	0.89 (0.63 – 1.26)	0.52	
Dominant model	1.08(0.78-1.50)	0.64	0.84(0.50 - 1.41)	0.52	
Recessive model	0.49 (0.13 – 1.82)	0.28	0.91 (0.49 – 1.70)	0.78	
Genotype model ¹	NA	0.60	NA	0.93	
SNCA rs2583988					
Additive model	1.07 (0.88 – 1.29)	0.51			
Dominant model	1.10 (0.86 - 1.42)	0.43			
Recessive model	1.04 (0.67 – 1.60)	0.87			
Genotype model ¹	NA	0.66			
MAPT rs1052553					
Additive model	1.04 (0.84 – 1.29)	0.74			
Dominant model	1.67 (0.91 – 3.11)	0.10			
Recessive model	0.96 (0.74 – 1.25)	0.77			
Genotype model ¹	NA	0.34			

Supplementary Table 7: Interactions of LRRK2 p.R1398H with SNCA and MAPT variants in regard to susceptibility to PD when adjusting for age and gender in addition to site.

ORs, 95% CIs, and p-values result from fixed-effects logistic regression models adjusted for age, gender, and site. OR=odds ratio. CI=confidence interval. --- indicates a variant observed at a frequency too low in the given series to allow for association analysis. ¹Tests of interaction under a genotype model do not produce a single interaction OR, and therefore only a p-value is given.

Supplementary Table 8: Interactions of LRRK2 p.R1398H with *SNCA* and *MAPT* variants in regard to susceptibility to PD utilizing a random effects model, and tests for heterogeneity of interaction effects between sites

	Caucasi	an series (5991	PD, 4331 controls)	Asian series (1351 PD, 938 controls)				
	Evaluation of between-site Evaluation of gene-gene		-gene	Evaluation of betw	ween-site	Evaluation of gene-gene		
	heterogeneity in int	heterogeneity in interaction ORs interaction		heterogeneity in inte	raction ORs	interaction		
Interaction between LRRK2	$I^2 (05\% CI)^1$		Interaction OR (95%	P-	$I^2 (05\% CI)^1$		Interaction OR (95%	P-
p.R1398H and:	1 (9570 CI)	I -value	CI)	value	1 (95% CI)	I -value	CI)	value
SNCA rs181489								
Additive model	25% (0% - 59%)	0.18	1.07 (0.84 – 1.34)	0.59	· · · · · · · · · · · · · · · · · · ·			
Dominant model	31% (0% - 62%)	0.11	1.15 (0.83 – 1.58)	0.40				
SNCA rs356219								
Additive model	0% (0% - 47%)	0.57	0.98 (0.82 – 1.17)	0.83	50% (0% - 84%)	0.11	1.03 (0.64 – 1.67)	0.89
Dominant model ²	0% (0% - 52%)	0.45	1.11 (0.85 – 1.44)	0.45	55% (0% - 85%)	0.084	1.02 (0.49 – 2.10)	0.96
SNCA rs11931074								
Additive model	0% (0% - 24%)	0.86	0.91 (0.66 – 1.25)	0.56	48% (0% - 83%)	0.12	1.13 (0.72 – 1.77)	0.60
Dominant model ²	0% (0% - 15%	0.90	0.97 (0.70 - 1.36)	0.88	46% (0% - 82%)	0.14	1.22 (0.64 – 2.34)	0.54
SNCA rs2583988								
Additive model	0% (0% - 42%)	0.68	1.07 (0.88 – 1.29)	0.50				
Dominant model	0% (0% - 22%)	0.87	1.14 (0.88 – 1.46)	0.32				
MAPT rs1052553								
Additive model	36% (0% - 65%)	0.075	1.01 (0.75 – 1.36)	0.95				
Recessive model ³	30% (0% - 62%)	0.13	0.95 (0.69 – 1.33)	0.78				

Interaction ORs and p-values result from random effects models. Heterogeneity p-values result from chi-square tests based on the Q statistic, where the test is for differences in interaction ORs between sites. ¹The I² statistic is a measure of the proportion of variation in interaction ORs between sites that is due to heterogeneity beyond chance [25] ²The minor allele differed between the Caucasian and Asian series' for *SNCA* rs356219 and rs11931074, although the risk allele was the same; in the Asian series, recessive models rather than dominant models were considered for these two variants due to the small number of homozygotes of the protective allele for individual sites in that series. ³For *MAPT* rs1052553, a recessive model rather than a dominant model was considered due to the small number of homozygotes of the protective allele for individual sites. --- indicates a variant observed at a frequency too low in the given series to allow for association analysis.

	Interaction between LRRK2 p.R1398H and:											
	Sample size		SNCA rs181489		SNCA rs356219		SNCA rs11931	074	SNCA rs2583988		MAPT rs1052553	
Country	Patients with PD	Controls	OR (95% CI)	P- value	OR (95% CI)	P-value	OR (95% CI)	P- value	OR (95% CI)	P- value	OR (95% CI)	P- value
Additive model								$\boldsymbol{\mathcal{A}}$				
A 1: -	022	712	0.92 (0.52, 1.20)	0.20	0.02 (0.00, 1.44)	0.74	1.00 (0.00 4.10)	0.11	0.0(0.01, 1.51)	0.96	1 11 (0 (9 1 9))	0.69
Austrana	923	/13	0.82(0.52, 1.29)	0.39	0.93 (0.00, 1.44)	0.74	1.88 (0.88. 4.18)	0.11	0.96(0.01, 1.51)	0.80	1.11(0.08, 1.80)	0.08
France	548	143	0.56 (0.16, 1.89)	0.36	0.92 (0.28, 3.05)	0.90			0.51(0.17, 1.51)	0.22	0.27(0.04, 1.02)	0.097
Germany	1074	675	1.33 (0.84, 2.10)	0.22	1.23 (0.80, 1.89)	0.35	0.79 (0.39, 1.62)	0.52	1.23 (0.79, 1.94)	0.37	1.50 (0.90, 2.54)	0.13
Greece	450	405	0.63 (0.29, 1.35)	0.24	0.62 (0.30, 1.77)	0.20	0.48 (0.09, 2.09)	0.34	1.05 (0.52, 2.15)	0.89	0.41 (0.16, 1.06)	0.069
Ireland	360	444	2.25 (1.18, 4.51)	0.012	0.72 (0.39, 1.29)	0.27	1.07 (0.31, 3.61)	0.91	1.85 (0.92, 3.88)	0.092	0.98 (0.46, 2.19)	0.96
Italy	469	365	0.82 (0.43, 1.61)	0.56	1.15 (0.61, 2.24)	0.67	1.49 (0.51, 4.75)	0.48	0.96 (0.48, 1.95)	0.90	1.72 (0.83, 3.73)	0.15
Norway	602	526	1.21 (0.75, 1.97)	0.43	1.26 (0.79, 2.01)	0.33	1.07 (0.52, 2.24)	0.85	1.30 (0.80, 2.13)	0.29	1.10 (0.62, 1.96)	0.75
Poland	349	340	1.12 (0.55, 2.33)	0.76	1.30 (0.63, 2.72)	0.48	1.01 (0.26, 4.04)	0.99	1.16 (0.59, 2.37)	0.67	0.88 (0.37, 2.04)	0.76
Sweden	91	180	0.63 (0.21, 1.69)	0.38	0.57 (0.20, 1.56)	0.28	0.50 (0.08, 2.55)	0.42	0.60 (0.17, 1.87)	0.40	0.47 (0.12, 1.92)	0.29
United States	1,125	540	1.22 (0.75, 2.02)	0.43	0.91 (0.58, 1.44)	0.69	0.58 (0.28, 1.24)	0.15	0.96 (0.58, 1.61)	0.88	1.03 (0.60, 1.76)	0.93
Overall Caucasian	5,991	4,331	1.06 (0.88, 1.28)	0.52	0.98 (0.82, 1.17)	0.81	1.06 (0.79, 1.43)	0.69	1.07 (0.89, 1.29)	0.47	1.05 (0.85, 1.30)	0.65
Dominant model ¹												
Australia	923	713	0.96 (0.52, 1.77)	0.89	1.31 (0.68, 2.58)	0.42	1.83 (0.83, 4.17)	0.14	1.00 (0.55, 1.82)	0.99	1.08 (0.58, 2.00)	0.81
France	548	143	0.67 (0.15, 2.61)	0.57	0.92 (0.17, 3.96)	0.91			0.71 (0.18, 2.72)	0.62	0.24 (0.03, 1.09)	0.093
Germany	1074	675	1.34 (0.74, 2.42)	0.34	1.23 (0.67, 2.27)	0.50	0.97 (0.42, 2.27)	0.94	1.55 (0.87, 2.79)	0.14	1.26 (0.69, 2.30)	0.46
Greece	450	405	0.34 (0.12, 0.92)	0.034	0.36 (0.13, 0.96)	0.043	0.46 (0.09, 2.03)	0.32	0.86 (0.32, 2.27)	0.75	0.32 (0.11, 0.88)	0.028
Ireland	360	444	2.97 (1.19, 7.80)	0.022	0.81 (0.32, 2.11)	0.66	0.98 (0.28, 3.32)	0.97	1.76 (0.69, 4.64)	0.24	0.92 (0.38, 2.31)	0.85
Italy	469	365	1.02 (0.43, 2.45)	0.96	1.32 (0.54, 3.28)	0.54	1.44 (0.46, 4.88)	0.54	1.05 (0.44, 2.53)	0.91	1.78 (0.74, 4.33)	0.20
Norway	602	526	1.25 (0.66, 2.38)	0.50	1.55 (0.78, 3.06)	0.21	1.16 (0.55, 2.52)	0.70	1.18 (0.62, 2.25)	0.60	1.17 (0.59, 2.33)	0.65
Poland	349	340	1.71 (0.66, 4.52)	0.27	2.03 (0.75, 5.69)	0.17	0.95 (0.24, 3.86)	0.94	1.67 (0.66, 4.35)	0.29	0.96 (0.33, 2.78)	0.94
Sweden	91	180	0.69 (0.16, 2.83)	0.61	0.84 (0.19, 4.07)	0.82	0.50 (0.08, 2.55)	0.42	0.61 (0.14, 2.51)	0.50	0.58 (0.12, 2.96)	0.50
United States	1,125	540	1.26 (0.66, 2.40)	0.48	0.88 (0.45, 1.68)	0.69	0.66 (0.30, 1.49)	0.31	1.02 (0.54, 1.95)	0.95	0.88 (0.46, 1.69)	0.70
Overall Caucasian	5,991	4,331	1.13 (0.88, 1.44)	0.33	1.09 (0.85, 1.41)	0.49	1.12 (0.81, 1.54)	0.50	1.13 (0.89, 1.44)	0.32	0.98 (0.76, 1.26)	0.88

Supplementary Table 9: Interactions of LRRK2 p.R1398H with SNCA and MAPT variants in regard to susceptibility to PD in the Caucasian series, separately for each country

ORs and p-values result from fixed-effects logistic regression models adjusted for each of the two variants, their interaction, and site for countries with more than one site. Interaction ORs under an additive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to each additional risk allele for *SNCA* and *MAPT* variants, or alternatively as the as the multiplicative increase in the effect of each additional risk allele for *SNCA* and *MAPT* variants on PD corresponding to presence of the minor allele for LRRK2 p.R1398H. Interaction ORs under a dominant model are interpreted as the multiplicative increase in the effect of the minor allele for *SNCA* and *MAPT* variants on PD corresponding to presence of the risk allele for *SNCA* and *MAPT* variants, or alternatively as the as the multiplicative increase in the effect of presence of the risk allele for *SNCA* and *MAPT* variants on PD corresponding to presence of the minor allele for LRRK2 p.R1398H. ¹Models for *MAPT* rs1052553 are recessive models rather than dominant models due to the small number of homozygotes of the minor allele for this variant in individual sites; the minor allele for *MAPT* rs1052553, and therefore a recessive model compares homozygotes of the major (risk) allele with the other two genotypes. OR=odds ratio. CI=confidence interval. --- indicates a country where the risk allele was not present in either patients with PD or controls.

				Test of associ			
SNCA Variant/Genotype	MAPT rs1052553 genotype ¹	LRRK2 p.R1398H genotype	Sample genotype count and frequency	OR (95% CI)	P-value	Test of interaction	
SNCA rs181489							
CC	GG or GA	GG	1335 (13.6%)	1.00 (reference)	N/A		
CC	GG or GA	GA or AA	214 (2.2%)	0.81 (0.60 - 1.09)	0.17		
CC	AA	GG	2573 (26.3%)	1.19 (1.04 - 1.37)	0.011		
CC	AA	GA or AA	385 (3.9%)	0.99 (0.78 - 1.26)	0.95	D 0 00	
CT or TT	GG or GA	GG	1528 (15.6%)	1.16 (1.00 - 1.35)	0.053	P=0.80	
CT or TT	GG or GA	GA or AA	231 (2.4%)	1.11 (0.83 - 1.48)	0.48		
CT or TT	AA	GG	3075 (31.4%)	1.51 (1.32 - 1.72)	2.3E-9		
CT or TT	AA	GA or AA	447 (4.6%)	1.38 (1.10 - 1.72)	0.0051		
SNCA rs356219							
AA	GG or GA	GG	1066 (10.7%)	1.00 (reference)	N/A		
AA	GG or GA	GA or AA	156 (1.6%)	0.86 (0.61 - 1.22)	0.41		
AA	AA	GG	2021 (20.2%)	1.26 (1.08 - 1.47)	0.0038		
AA	AA	GA or AA	284 (2.8%)	1.00 (0.77 - 1.32)	0.97	D _0.04	
AG or GG	GG or GA	GG	1846 (18.5%)	1.23 (1.05 - 1.43)	0.011	P=0.90	
AG or GG	GG or GA	GA or AA	290 (2.9%)	1.11 (0.85 - 1.46)	0.43		
AG or GG	AA	GG	3772 (37.8%)	1.54 (1.34 - 1.78)	2.2E-9		
AG or GG	AA	GA or AA	557 (5.6%)	1.38 (1.11 - 1.71)	0.0032		
SNCA rs11931074							
GG	GG or GA	GG	2517 (24.9%)	1.00 (reference)	N/A		
GG	GG or GA	GA or AA	371 (3.7%)	0.88 (0.70 - 1.10)	0.27		
GG	AA	GG	4926 (48.7%)	1.26 (1.14 - 1.40)	4.7E-6		
GG	AA	GA or AA	690 (6.8%)	1.06 (0.89 - 1.26)	0.52	D_0 99	
GT or TT	GG or GA	GG	446 (4.4%)	1.43 (1.16 - 1.77)	0.0009	P=0.88	
GT or TT	GG or GA	GA or AA	81 (0.8%)	1.22 (0.77 - 1.94)	0.40		
GT or TT	AA	GG	913 (9.0%)	1.64 (1.39 - 1.93)	2.8E-9		
GT or TT	AA	GA or AA	163 (1.6%)	1.65 (1.18 - 2.33)	0.0039		
SNCA rs2583988							
CC	GG or GA	GG	1526 (15.2%)	1.00 (reference)	N/A		
CC	GG or GA	GA or AA	251 (2.5%)	0.81 (0.62 - 1.07)	0.14		
CC	AA	GG	2969 (29.5%)	1.18 (1.04 - 1.35)	0.0095		
CC	AA	GA or AA	426 (4.2%)	0.98 (0.79 - 1.23)	0.88	P-0.63	
CT or TT	GG or GA	GG	1426 (14.2%)	1.15 (0.99 - 1.34)	0.068	F=0.03	
CT or TT	GG or GA	GA or AA	199 (2.0%)	1.20 (0.88 - 1.63)	0.25		
CT or TT	AA	GG	2854 (28.3%)	1.52 (1.33 - 1.73)	3.2E-10		
CT or TT	AA	GA or AA	418 (4.2%)	1.32 (1.06 - 1.66)	0.015		

Supplementary Table 10: Three-way interactions between LRRK2 p.R1398H, *SNCA* variants, and *MAPT* rs1052553 in regard to susceptibility to PD in the Caucasian series

ORs and p-values result from fixed-effects logistic regression models. For tests of association, the three given variants were combined into one variable, and the model was adjusted for site. For tests of interaction, the fixed-effects logistic regression model was adjusted for site, and the p-value given tested for any interaction (pair-wise or three-way) between the three given variants. Rare homozygotes were collapsed with heterozygotes in order to avoid extremely rare three-variant genotype combinations. ¹The A allele for *MAPT* rs1052553 corresponds to the H1 haplotype. OR=odds ratio. CI=confidence interval.

			Interaction between LRRK2 p.R1398H and:					
			SNCA rs3562	219	SNCA rs11931	074		
Country	Patients with PD	Controls	OR (95% CI)	P-value	OR (95% CI)	P- value		
Additive model								
Japan	171	90	0.45 (0.15, 1.24)	0.13	0.47 (0.18, 1.20)	0.12		
Korea	811	550	1.24 (0.85, 1.82)	0.27	1.34 (0.92, 1.96)	0.13		
Taiwan	369	298	1.41 (0.77, 2.62)	0.27	1.50 (0.84, 2.76)	0.18		
Overall Asian	1,351	938	1.17 (0.87, 1.59)	0.30	1.25 (0.93, 1.69)	0.14		
Recessive model ¹								
Japan	171	90	0.25 (0.06, 1.04)	0.056	0.30 (0.08, 1.19)	0.084		
Korea	811	550	1.42 (0.81, 2.51)	0.22	1.61 (0.92, 2.83)	0.096		
Taiwan	369	298	1.58 (0.65, 3.94)	0.32	1.73 (0.73, 4.17)	0.21		
Overall Asian	1,351	938	1.22 (0.78, 1.92)	0.38	1.39 (0.90, 2.17)	0.14		

Supplementary Table 11: Interactions of LRRK2 p.R1398H with *SNCA* and *MAPT* variants in regard to susceptibility to PD in the Asian series, separately for each country

ORs and p-values result from fixed-effects logistic regression models adjusted for each of the two variants, their interaction, and site for countries with more than one site. Interaction ORs under an additive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to each additional risk allele for *SNCA* variants, or alternatively as the as the multiplicative increase in the effect of each additional risk allele for *SNCA* variants on PD corresponding to presence of the minor allele for LRRK2 p.R1398H. Interaction ORs under a recessive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to presence of two risk alleles for *SNCA* variants, or alternatively as the as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to presence of two risk alleles for *SNCA* variants, or alternatively as the as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to presence of two risk alleles for *SNCA* variants, or alternatively as the as the multiplicative increase in the effect of presence of two risk alleles for *SNCA* variants on PD corresponding to presence of two risk alleles for *SNCA* variants on PD corresponding to presence of two risk alleles for *SNCA* variants on PD corresponding to presence of two risk alleles for *SNCA* variants on PD corresponding to presence of two risk alleles for *SNCA* variants on PD corresponding to presence of the minor allele for LRRK2 p.R1398H. ¹Recessive models rather than dominant models are displayed in the Asian series due to the small number of homozygotes of the protective allele for *SNCA* variants in that series; in the Asian series, recessive models for *SNCA* variants compare homozygotes of the major (risk) allele with the other two genotypes. OR=odds ratio. CI=confidence interval.

Supplementary Text: Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium

The members of the GEO-PD Consortium include:

- 1) Executive Directors:
 - a. Medical Director: Demetrius M. Maraganore (NorthShore University HealthSystem, Chicago, IL)
 - b. Scientific Director: Matthew J. Farrer (University of British Columbia, Vancouver, BC, Canada)
- 2) Core Directors:
 - a. Clinical Core: Demetrius M. Maraganore (NorthShore University HealthSystem, Chicago, IL); Jan O. Aasly (University of Trondheim, Trondheim, Norway)
 - b. Genotyping Core: Matthew J. Farrer (University of British Columbia, Vancouver, BC, Canada); Rejko Krüger (University of Tübingen, Tübingen, Germany)
 - c. Statistical Core: Alexis Elbaz (Institut national de la santé et de la recherche médicale and University Paris-Sud 11); John P. Ioannidis (Stanford University, Palo Alto, CA, USA)
- 3) Global Site Principal Investigators:

Jan O. Aasly (University of Trondheim, Trondheim, Norway) Grazie Annesi (National Research Council, Cosenza, Italy) Annarita Bentivoglio (Università Cattolica del Sacro Cuore, Rome, Italy) Maria Bozi (General Hospital of Syros, Syros, Greece) Alexis Brice (Universite Pierre et Marie Curie, Paris, France) Andrea Carmine-Belin (Karolinska Institutet, Stockholm, Sweden) Jonathan Carr (University of Stellenbosch, Cape Town, South Africa) Camille Carroll (Plymouth University Peninsula Schools of Medicine and Dentistry, England) Bruce Chase (University of Nebraska, Omaha, Nebraska, USA) Harvey Checkoway (University of Washington, Seattle, Washington, USA) Sheng-Di Chen (Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China) Sun Ju Chung (Asan Medical Center, Seoul, Korea) Carlos Cosentino (Instituto de Ciencias Neurologicas, Lima, Peru) Silke Cresswell (University of British Columbia, BC, Canada) Angela Deutschlaender (Max-Planck Institute of Psychiatry, Munich, Germany) Alexis Elbaz (Institut national de la santé et de la recherche médicale and University Paris-Sud 11) Carlo Ferrarese (University of Milano-Bicocca, Monza, Italy) Tatiana Foroud (Indiana University, Indianapolis, IN, USA) Gaëtan Garraux (University Hospital of Liege, Belgium) Stefano Goldwurm (Parkinson Institute, Milan, Italy) George Hadjigeorgiou (University of Thessaly, Larissa, Greece) Nobutaka Hattori (Juntendo University, Tokyo, Japan) Beom Seok Jeon (Seoul National Hospital, Seoul, Korea)

Hideshi Kawakami (University of Hiroshima, Hiroshima, Japan) Yun Joong Kim (Hallym University, Anyang, Kyonggi-do, Korea) Asha Kishore (Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India) Christine Klein (University of Luebeck, Luebeck, Germany) Dimitri Krainc (Northwestern University, Chicago, IL USA) Rejko Krüger (University of Tübingen, Tübingen, Germany) Anna Krygowska-Wajs (Collegium Medicum, Jagiellonian University, Krakow, Poland) Luis Lay-Son (University of Santiago de Chile, Santiago, Chile) Jeui-Jueng Lin (Chushagn Show-Chwan Hospital, Nantou, Taiwan) Demetrius M. Maraganore(NorthShore University HealthSystem, Evanston, IL, USA) George Mellick (Griffith University, Nathan, Queensland, Australia) Karen E. Morrison (University of Birmingham, UK) Renato P. Munhoz (Paraná Parkinson's Disease Foundation, Curitiba/PR, Brazil) Njide U. Okubadejo (University of Lagos, Lagos, Nigeria) Grzegorz Opala (Medical University of Silesia, Katowice, Poland) Pao Pastor (University of Navarra School of Medicine, Pamplona, Spain) Haydeh Payami (Wadsworth Center, Albany, New York) Sofya N. Pchelina (Pavlov State Medical University of Saint Petersburg, Saint Petersburg, Russia) Maria Skaalum Petersen (The Faroese Hospital System, Faroe Islands) Andrea Puschmann (Skane University Hospital, Lund, Sweden) Beate Ritz (University of California, Los Angeles, CA, USA) Ekaterina Rogaeva (University of Toronto, Canada) Ali Sazci (University of Kocaeli, Kocaeli, Turkey) Jaroslaw Slawek (Medical University of Gdansk, Poland) Leonidas Stefanis (University of Athens Medical School, Athens, Greece) Eng-King Tan (Singapore General Hospital, National Neuroscience Institute, Singapore) Tatsushi Toda (Osaka University Graduate School of Medicine, Osaka, Japan) Mathias Toft (Oslo University Hosptial, Oslo, Norway) Christine Van Broeckhoven (University of Antwerp, Antwerp, Belgium) Karin Wirdefeldt (Karolinska Institute, Stockholm, Sweden) Dirk Woitalla (St. Josef Hospital Bochum, Dept. of Neurology, Ruhr Univ. Bochum, Germany) Zbigniew K. Wszolek (Mayo Clinic, Jacksonville, FL, USA) Alexander Zimprich (Medical University, Vienna, Austria)