Supplementary Materials

Supplementary Text

In the conformational spread model of the motor switch, sensitivity and CheY-P binding cooperativity depend on two parameters: E_J , the coupling energy between adjacent subunits of the switch, and E_a , the energy difference between active (CW) and inactive (CCW) states of each subunit. We simulated this model in the 2-D parameter space of E_J and E_a , and ploted the dependence of sensitivity and CheY-P binding cooperativity on E_J and E_a , along with a plot of CheY-P binding cooperativity vs. sensitivity, as shown in Fig. S1. Clearly, to obtain a sensitivity of about 16 in this 2-D parameter space, the conformational spread model predicts a CheY-P binding cooperativity of about 9. Other parameters used in the simulation were: the number of protomers, 34, the flipping rate of each subunit, 10^4 s⁻¹, and the ligand binding rate, 10 s⁻¹.

Supplementary Figure Legend

Fig. S1. Dependence of sensitivity (panel \mathbf{a}) and CheY-P binding cooperativity (panel \mathbf{b}) on $E_{\rm J}$ and $E_{\rm a}$ simulated with the conformational spread model. Panel \mathbf{c} shows the CheY-P binding cooperativity vs sensitivity using data from panels \mathbf{a} and \mathbf{b} .

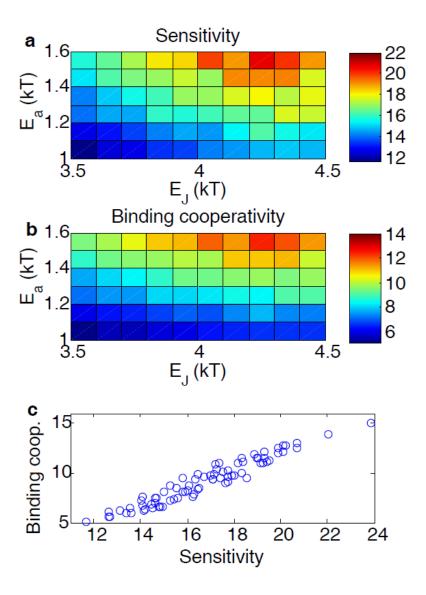


Fig. S1