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1 Protein sequences

In the following, the cysteines that are used for handle attachment are shown in bold, the sequence corresponding
to villin headpiece is shown in italics.
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HP35wt, Ubq-HP35wt-Ubq-H6

MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVL-
RLRGGELGSSGGLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLFGGSSGGTMQIFVKTLTGKTITLEVEPS-
DTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKES TLHLVLRLRGGKCLE HHHHHH

HP35stab, Ubq-HP35stab-Ubq-H6

MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVL-
RLRGGELGSSGGLSDEDFKAVFGMTRSAFANLPLWKQQALMKEKGLFGGSSGGTMQIFVKTLTGKTITLEVEPS-
DTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKES TLHLVLRLRGGKCLE HHHHHH

2 SI Methods

2.1 Fluorescence measurements

All �uorescence measurements were performed with a Jasco FP-8500 spectro�uorimeter. �e sandwich protein
contains a single tryptophan in the villin subdomain and tyrosines in ubiquitin which were used to determine
protein domains stability. �e �uorescence of W64 was used as a reporter group for HP35 unfolding a�er selec-
tive excitation of tryptophan at 296 nm (3 nm bandwidths) andmonitoring an emissionmonitoring at 355 nm (3 nm
bandwidths). Tyrosine �uorescence was used as a speci�c probe for unfolding of ubiquitin a�er excitation at 278 nm
(3 nm bandwidths) and emission at 302 nm (3 nm). �e measurements were performed in 0.1M M sodium phos-
phate, 0.15M NaCl, pH 7.2, 0.75 % glucose, 2 % glycerol at 303 K. �e experimental data (HP35wt, HP35stab) were
analyzed according to a two-state model by assuming a linear dependence of �uorescence emission on denaturant
concentration. A nonlinear least-squares �t of the experimental data was used to obtain the Gibbs free energy of
denaturation ∆GD as a function of denaturant [1]. Guanidinium chloride concentrations were determined from the
known refractive indices [2].

2.2 Circular dichroismmeasurements

Circular dichroism measurements were done on a Jasco J-815 (Japan) spectropolarimeter at 20 ○C. �e peptides
were dissolved in 0.1M sodium phosphate, 0.15M NaCl to a �nal concentration of 2mM. For spectral measure-
ments, the peptides were diluted with 5mM sodium phosphate to a �nal concentration of 55 µM. �e following
parameters were used for measurements in the far UV region (180-250 nm): 1 nm bandwidths, scanning speed of
20 nm/min, 1 nm resolution, 1 s response time, 0.1 cm path length cuvettes and 25 accumulations. Guanidinium
chloride titrations were performed in 0.1M sodium phosphate, 0.15M NaCl, pH 7.2, 0.65% glucose, 2 % glycerol at
293 K.

2.3 Experimental determination of distribution moments

Comparison between experimental distributions and theoretical values was based on the distributions’ moment
expansion. For an experimental trace of bead de�ection values x(t) at a sampling rate δ with N data points, the
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standard deviation σx and skewness γx were calculated according to
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where ⟨x⟩ is the time average of the trajectory x(t).

2.4 Elastic linker models

At low forces, when the protein is still folded, the elasticity of the construct is dominated by the behavior of the
dsDNA handles. It was modeled using an extensible wormlike chain model [3]. �e force as a function of extension
is implicitly given by

FeWLC(ξ) = kBT
pD
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where LD is the DNA’s contour length, pD its persistence length and K its stretch modulus. In our experiments,
typical values were LD ≈ 360nm, pD ≈ 23 nm and K ≈ 500pN.

Contributions of the unfolded polypeptide that play a role at high forces were modeled by adding a wormlike chain
(WLC) model [4] in series with the eWLC linkers. Here, the force is given by

FWLC(ξ) = kBT
pp
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Lp is the contour length of the fully unfolded protein and pp its persistence length. In our experiments, we assumed
pp = 0.7 nm.

Since the linker is at equilibrium with the unfolded polypeptide, the forces must be equal. �e extension of the
combined construct consisting of DNA linker and unfolded polypeptide is hence given by

ξconstruct(F) = ξeWLC(F) + ξWLC(F), (S5)

where ξeWLC and ξWLC are the inverse of eq. (S3) and eq. (S4), respectively. Consequently, the force-extension
relation of the DNA-polypeptide construct is given by the inversion of eq. (S5).

2.5 Calculation of the equilibriummoments for the tethered protein under force

When the kinetics of folding/unfolding is slow, the �lter e�ects that arise due to the damping of the bead motion
and/or sampling, are negligible. �e expected values for standard deviation and skewness can hence be approxi-
mated in equilibrium terms. In the following discussion, F denotes the average force that will be measured exper-
imentally, when the trap centers are a certain distance d apart. It is assumed in the calculatios that the bead size is
zero.

We assume that the protein can unfold inN individual substeps and the di�erence in free energy between the folded
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and unfolded states is ∆G01. �e system’s Hamiltonian is

H(x1 , x2 , i) = (1 −
i
N

) ⋅ ∆G0 +
1
2
k1x21 +

1
2
k2x22 +

d−x1−x2

∫
0
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i
N
⋅ Lp,tot , ξ) dξ. (S6)

Here, Fconstruct is the inverse of eq. (S5).

In experiments, we measured the sum of the absolute displacements of the beads from their center positions x =

x1 + x2. �e distribution of x can be calculated based on eq. (S6) by integrating out all other degrees of freedom:

p(x1 + x2) =
∑

N
i=0 exp (−

H(x1 ,x2 , i)
kBT )

∫∞−∞ dx1 ∫∞−∞ dx2∑N
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. (S7)

While in principle the entire calculated distribution p(x) = p(x1 + x2) can be directly compared to experimental
data, we focused on the �rst three normalized central moments. �e n-th moment of the total bead de�ection
x = x1 + x2 is given by

µn = ⟨xn⟩ = ⟨(x1 + x2)n⟩ = ∫ ∞

−∞
dx1 ∫ ∞

−∞
dx2 (x1 + x2)n ⋅ p(x1 + x2). (S8)

Note that the µn only depend on ∆G0, d and the mechanical parameters of the linker. A force-distance curve can
hence be constructed based on eq. (S8) via

F(d) = ⟨x⟩ ⋅ kc , (S9)

where kc = ( 1k1 +
1
k2 )

−1
is the combined sti�ness of the two traps.

Higher central moments, such as the standard deviation σ and the skewness γ were calculated from eq. (S8):

σ =
√
µ2 − µ21 (S10)

γ =
µ3 − 3µ1µ2 + 2µ31

σ 3
. (S11)

Note that since ξconstruct = d − x1 − x2, the moments can be equally interpreted as moments of the extension. In this
case, σextension = σ and γextension = −γ.

2.5.1 Force-distance curves under equilibrium conditions

We can use the �rst moment de�nition of eq. (S8) to construct �t functions for force-distance curves that were
recorded under quasi-equilibrium conditions as shown in Fig. 1 D, F (see eq. (S9)). In the case of a two-state model

1Note that ∆G0 < 0 for stably folded proteins.
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we arrive at
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In the case of three states, where we assumed that the intermediate state has half the energy of the folded state and
half the contour length, we arrive at
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Here, kc = ( 1k1 +
1
k2)

−1
is the combined trap sti�ness of both traps. Fconstruct is given by the inverse of eq. (S5). �e

model parameters necessary to construct the �ts shown in Fig. 1 D, F are listed in Table S1.

2.6 Autocorrelation functions

A discrete unnormalized autocorrelation x∗(τ) at time lag τ of a trace x(t), that was sampled at a sampling rate δ
and has N data points, was calculated numerically using

x∗ (τ = j
δ
) =

1
N

N−1
∑
i=0

(x i − µx) (x i− j − µx) , (S14)

where µx is the mean of the trace x (t). Non-overlapping regions of the expression above were zero-padded. For
typical trace lengths in the order of seconds, this zero padding did not a�ect the typically investigated autocorrela-
tion times.

�e autocorrelation functions of the DNA linkers could to good approximation be �tted with single exponential
functions. We assumed that the kinetics of the �uctuations of the DNA linkers were independent of the �uctuations
of the protein tethered to the linkers. To good approximation, the autocorrelation functions of the tethered protein
constructs could therefore be �tted with double exponential functions of the form

f (τ) = A0 exp (−λ0τ) + A1 exp (−λ1τ). (S15)
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When the rate constants λ0 and λ1 lay close within a factor of ⪅ 5, the unconstrained �tting of autocorrelation
functions with eq. (S15) was not robust. We therefore chose to �x the amplitudes A0 and the rates λ0 to values
obtained separately in experiments withDNA linkers only. Nevertheless, evenwhenwe applied a single exponential
model to data of tethered proteins, the obtained rate constants were in good agreement with the data obtained from
the more elaborate double exponential model.

Some of our experiments showed a very slow phase in the autocorrelation function. Following a recent suggestion,
we attribute the e�ect to a coupling of the z-(axial-)direction of the instrument into our measurement coordinate
[5]. �e amplitude of this phase was always less than ≈ 10% of the full signal and could be accounted for by adding
a third exponential decay into the �tting function. Since the time constant of this phase (⪅ 104 s−1) was always well
separated from the other phases, the identi�cation of the contribution due to z-coupling was unambiguous. �is
third slow phase was observed in experimental autocorrelation functions of the DNA dimer as well as in HP35stab
and HP35wt.

2.7 Model for the kinetics of folding and unfolding under force

�e force dependence of the rate constants for folding were modeled according to earlier work that accounts for
all the energies that are involved during the transition [6, 7]. �e rate constants for the corresponding unfolding
transition were calculated based on the principle of detailed balance as follows:

�e folding transition rate constant is given by

kfold (F) = k0,fold ⋅ exp(
ĜU (F) − ĜTS (FU→TS (F))

kBT
) . (S16)

Here, ĜU(F) is the free energy that is required to stretch all mechanical parts (Hookean displacement of the beads
from their positions, stretching of the DNA linker and stretching of the unfolded polypeptide) when the protein
is in its unfolded state at force F. Similarly, ĜTS is the free energy needed to stretch the all mechanical parts when
the protein is at the transition state. Generally, when the protein is in a state i that is characterized by the contour
length of the unfolded polypeptide L i , the free energy involved in the stretching mechanics is given by

Ĝ i (F) =
1
2
F2

kc
+

ξconstruct(F)

∫
0

Fconstruct (Lp = L i , ξ) dξ. (S17)

Since the experiments were conducted at constant trap separation rather than constant force conditions, the force
changes during the transition. �e function FU→TS (F) returns the force that acts when the system is at the transition
state, given that is at force F in the unfolded state. It can be readily calculated using the linker models discussed
above (eq. (S5)).

�e principle of detailed balance requires that

ln(
kfold (F)

kunfold (FU→N (F))
) = −

ĜN (FU→N (F)) − ĜU (F) + ∆G0
kBT

. (S18)
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Consequently, the unfolding transition rate constants are given by

kunfold (F) =
k0,fold

exp (−∆G0kBT )
⋅ exp(

ĜN (F) − ĜTS (FN→TS (F))
kBT

) . (S19)

�e rate constants calculated by eq. (S16) and eq. (S19) automatically full�l the principle of detailed balance. �e
determining parameters for kunfold and kfold are, in addition to themechanical properties of theDNA linkers and the
polypeptide, the zero-force folding rate constant k0,fold, the di�erence in energy between the folded and unfolded
state ∆G0 and the contour length of the unfolded polypeptide in the transition state.

In our data analysis we used this model to obtain kinetic and thermodynamic parameters from the force-dependent
autocorrelation decay functions (Chevron plot, see Fig. 3A). At a measured average force F the expected measured
autocorrelation rate constant from the protein is given by

λ(F) = kfold(F) + kunfold(F), (S20)

where kfold(F) and kunfold(F) are given by eq. (S16) and eq. (S19), respectively. �e parameters determining the
mechanical properties of theDNA linker and the polypeptidewere determined independently from force-extension
traces for each molecule. �e symmetry of the Chevron plots suggested a transition state roughly in the middle of
the energy landscape. We then adapted the parameters ∆G0, ∆LU-TS and k0,fold to obtain maximal overlap between
the model (continuous lines in Fig. 3A) and the measured values (closed circles in Fig. 3A). Results are listed in
Table S2.

2.8 Brownian dynamics simulations

�e objective of our Brownian dynamics simulations was to estimate the dynamic response in the measured bead
de�ection signal we are able to pick up when the protein undergoes rapid folding/unfolding events.

We based our simulations on a two (three) state model with the kinetic scheme N⇌ U (N⇌ I⇌ U). �e dynamic
variables of the model are the current folding state of the protein i ∈ {N,U} (i ∈ {N, I, U}) and the de�ections of
the two beads from the trap centers x1 and x2.

Each protein state i is de�ned by its (contour-)length of unfolded polypeptide L i and its thermodynamic stability
∆G i-U. Further inputs to the model are the zero-force folding rates k0,fold = k0,U→N (three state: k0,U→I and k0,I→N)
and the position of the transition state along the contour length coordinate, yielding the force-dependence of the
transition rate constants (i.e. the Chevron plot, also see section 2.7).

For a simulation at trap distance2 d, we made use of

d = ξconstruct (F , Lp = L i) +
F
k1
+

F
k2

(S21)

to determine the equilibrium forces acting when the protein is in state i. �e linker extension ξconstruct (F , Lp) is
given by eq. (S5). We then used these equilibrium forces to determine transition rate constants between the indi-
vidual states based on a model ful�lling detailed balance (eq. (S16), eq. (S19)). �ese �xed transition rate constants
were used for a Markov chain generator that determined the folding state i at each time step (see below).

2Note that d is de�ned such that when the bead surfaces touch, d = 0.

7



�e dynamics of the system was then simulated by numerically solving the discretized Langevin equations for each
of the beads, which were considered the slowest mechanical components in the system. Relaxation times of linkers
were considered negligible [8]. Since the bead motion is overdamped, the inertial terms were neglected. At each
simulation time step ∆t, the one-dimensional positions x1,2 of the beads were updated according to

x i (t + ∆t) = x i(t) +
∆t
γS

⎛

⎝
−k ix i(t) + Fconstruct(t) +

√
2kBTγS
∆t

ε(t)
⎞

⎠
(S22)

with the bead’s Stokes drag coe�cient γS = 6πηR, the trap spring constant k i and ε(t) being a random number
from a generator that produces an uncorrelated series with standard deviation σ = 1. �e sign convention is such
that high values of x i mean closer beads. η is the bu�er’s viscosity and was set to 1 cP = 10−9 pN snm2 . �e bead radius
R was 500nm. Additional drag of the solvent that couples to the DNA is small compared to the drag on the beads
[9] and was found not to signi�cantly a�ect the results.

�e external force on the beads Fconstruct(t) is conveyed by the dsDNA linker (depending on the folding state of
the protein, possibly in series with an unfolded polypeptide) and was determined at each time step. To this end,
we �rst calculated the current extension of the linker ξ(t) using d = ξ(t) + x1(t) + x2(t) and used the inverse of
eq. (S5) to calculate the force acting on the linker from ξ. �e parameter Lp, which describes the contour length of
unfolded polypeptide, was set based on the current folding state i.

�e dynamic variable i, which designates the current folding state of the protein, was updated at each time step
based on a Markov process with transition rate constants determined as described above. In this model, a fold-
ing/unfolding event instantaneously changes the length of the unfolded polypeptide. �e simulation result is the
response in bead de�ection we are able tomeasure when the protein undergoes rapid folding/unfolding transitions.

Typically, trajectories of the bead motions were simulated at a rate of 9MHz. Mimicking experimental procedure,
the data were then 8-pole Butterworth-�ltered at 150 kHz and subsequently subsampled at 300 kHz. �e di�erence
signal [10] was then calculated as x(t) = x1(t) + x2(t).

3 SI Text

3.1 Protein stability from chemical unfolding

In addition to force spectroscopy measurements, the stability of the constructs HP35wt and HP35stab were also
determined by chemical denaturation with GdmCl. �e data obtained are summarized in Fig. S1 (A), (B) and
Table S2.

3.2 Truncation mutants

We found that the equilibrium unfolding of HP35stab (K70M/N68A HP35) exhibits lower folding cooperativity
than HP35wt. While HP35wt shows all-or-none cooperativity, the folding transition of HP35stab is well described
by a three-state transition involving a partially folded intermediate. �is suggests that the two substitutions in the
C terminal helix decrease the folding cooperativity by stabilizing the C terminal substructure. To be able to observe
such an intermediate in force spectroscopy experiments, it necessarily must also exhibit measurable stability in
solution.
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To test this hypothesis, we analysed variants of HP35wt and HP35stab where the N-terminal helix was removed
(∆N-HP35wt –MTRSAFANLPLWKQQNLKKEKGLF), (∆N-HP35stab –MTRSAFANLPLWKQQALMKEKGLF).
For comparison, we also investigated a mutant where the C-terminal helix was removed (∆C-HP35 – LSDED-
FKAVFGMTRSAFANLPLWKQQ), see Fig. S1 (D).�e peptides were synthesized and puri�ed byGenscript (>98%
purity).

Far-UV CD spectroscopy con�rmed that the mutant ∆N-HP35stab still contains considerable helicity, while the
mutant ∆N-HP35wt does not (Fig. S1 (C)). �ese �ndings suggest a possible solution to the question why the ap-
parent folding cooperativity of HP35wt is all-or-none, while this model fails for HP35stab.

3.3 Veri�cation of experimental procedures by simulation

For validation of the analysis procedure, we simulated trajectories of a tethered protein with kinetics similar to our
experimental results (see SI Methods: Brownian dynamics simulations). We then analyzed these simulated traces
using the same methods that we applied to measured traces.

As expected, standard deviation and skewness values of the simulated traces closely resembled those obtained for
experimental trajectories (Fig. 2C, D, F, G).

Autocorrelation functions of the simulated trajectories were single-exponential for the DNA-only construct and
double-exponential in the case of a tethered protein. We then asked whether we could extract the kinetic informa-
tion we used as input for the simulations from these autocorrelation functions. By �xing the fast component of the
protein double exponential to values we obtained from simulating DNA only, we could robustly obtain information
about the protein kinetics from the slow component.

Results of a series of simulations where we used our experimental kinetic results as input parameters (continuous
lines) and the obtained kinetic information from autocorrelation analysis (intermediate shaded squares) are shown
in Fig. S4. �e kinetics obtained from autocorrelation analysis of the simulated traces are in good agreement with
their expected values, validating our autocorrelation procedures.

We then askedwhetherwe could distinguish small di�erences in kinetics using autocorrelation analysis. To this end,
we repeated the simulations with faster and slower folding/unfolding rates. Fig. S4 shows the results of simulations
with both 100.5 ≈ 3.16 times faster (light colors) and slower (dark colors) kinetics. Again, the results from the
simulations agreed well with the expected values. In addition, the kinetic simulation results for both faster and
slower kinetics are clearly di�erent from experimental data (panels (A),(C)). We conclude that we can discern
di�erences in folding/unfolding rates of up to a factor of three using autocorrelation analysis.

3.4 Cooperativity of folding/unfolding

�e data for HP35stab showed some deviations from a model where the folding/unfolding is fully cooperative. �e
peak force-dependent distribution standard deviations deviated from what would be theoretically expected from a
pure two-state folder under equilibrium conditions.

Experimental data indicated that the stabilized C-terminal part of HP35stab is at least partly structured (Fig. S1 (C)).

To verify the signi�cance of these deviations and to test whether the deviations are possibly due to a populated in-
termediate, we performed Brownian dynamics simulations of the measurement of HP35stab for the two competing
scenarios. In the case of full cooperativity, the kinetic scheme was assumed N ⇌ U. populated intermediate, the
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kinetic scheme was N ⇌ I ⇌ U. In all cases, each of the transitions N ⇌ U, N ⇌ I and I ⇌ U obeyed detailed
balance (eq. (S18)).

3.5 Measurement bandwidth and �ltering

�e e�ect of sampling frequency on the obtained distribution moments can be veri�ed using Brownian dynamics
simulations and is most pronounced in the standard deviations. Fig. S6 illustrates the importance of high sampling
rates when the exact values of the standard deviations are of interest. �e exact solution that would be obtained
at in�nite sampling bandwidth can be calculated using equilibrium theory (eq. (S8)). Nevertheless, even at high
sampling frequencies of 9MHz, deviations from this value are apparent (Fig. S6). Note that sampling at 9MHz is far
above the characteristic frequency of the construct ( f3dB(17 pN) ≈ 32 kHz). �e e�ect is even more pronounced at
our experimental conditions where the data was �ltered at 150 kHz and sampled at 300 kHz. Here, the discrepancy
between the standard deviation at in�nite bandwidth and at 300 kHz can be as big as ≈ 8%.
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Figure S1: (A), (B) Protein stability from GdmCl-induced unfolding.
(A) GdmCl-induced unfolding transition of 2 µM Ubq-HP35wt-Ubq (blue circles) and Ubq-HP35stab-Ubq (red
circles) at 30 ○Cmeasured by protein �uorescence at 355 nm a�er excitation at 295 nm in 0.1MNa-phosphate, 0.65%
glucose, 0.15M NaCl, 2 % glycerol at pH 7.2. �e two-state analysis [1] (continuous lines) gave values for HP35wt:
∆GD(30 ○C) = 10.1±0.2 kJmol−1 (≈ −4.1 kBT),m = 3.1±0.1 kJmol−1M−1 and [GdmCl]M = 3.26Mand forHP35stab:
∆GD(30 ○C) = 22.0 ± 2.5 kJmol−1 (≈ −8.9 kBT), m = 3.8 ± 0.1 kJmol−1M−1 and [GdmCl]M = 5.8M. Data are
summarized in table S2.
(B) GdmCl-induced unfolding transition of 2 µMUbq-HP35wt-Ubq (light green squares) and Ubq-HP35stab-Ubq
(dark green circles) at 30 ○C measured by protein �uorescence at 302 nm a�er excitation at 278 nm in 0.1M Na-
phosphate, 0.65% glucose, 0.15MNaCl, 2 % glycerol at pH 7.2. �e two-state analysis (continuous lines) gave values
for Ubq-HP35wt-Ubq: ∆GD(30 ○C) = 26 ± 1 kJmol−1, m = 7.8 ± 0.3 kJmol−1M−1 and [GdmCl]M = 3.33M and for
Ubq-HP35stab-Ubq: ∆GD(30 ○C) = 27 ± 1 kJmol−1, m = 8.2 ± 0.2 kJmol−1M−1 and [GdmCl]M = 3.29M.
(C) Far-UV region CD spectra of 55 µM ∆N-HP35wt (blue), ∆N-HP35stab (red), ∆C-HP35wt (black) in 2mM
sodium phosphate (pH 7.5) at 20 ○C.
(D) Representation of the mutants in (C), based on the crystal structure 1YU5.
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Figure S4: Simulations for HP35wt and HP35stab at faster and slower kinetics. (A), (B) data for HP35wt, (C), (D)
data for HP35stab. Data for the DNA only construct are shown in grey. Continuous lines are the best �ts to the
experimental data (�lled circles). Empty squares are results from brownian dynamics simulations. Plain red and
blue correspond to simulations of the best �t model. Light colors are results from a simulation with a folding rate
that is 100.5 ≈ 3.16 times faster than the best �t. Dark colored squares are results from a simulation with a folding
rate that is 100.5 ≈ 3.16 times slower.
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Figure S5: Brownian dynamics simulations for HP35stab with full cooperativity of folding (two-state model, con-
tinuous lines) and an assumed intermediate (three-state model, dashed lines). Red dots are experimental values.
�e intermediate was assumed to have a free energy of −∆G0/2 and a length of L/2, where −∆G0 is the free energy
of the native state and L the contour length di�erence between native and unfolded (see Table S2). In the case of full
cooperativity, the zero-force folding rate k0 was 106.0 s−1 for this molecule. In the case of a populated intermediate,
we assumed k0,U→I = k0,I→N = 105.2 s−1.
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Figure S6: �e e�ect of �ltering on the standard deviation of the data. (A) Simulated trace of a HP35stab tethered
protein at 17 pN. Mimicking experimental procedures, a simulated trace at a sampling rate of 9MHz (grey) was
�ltered at 150 kHz and subsampled at 300 kHz (green). �e corresponding power spectra are shown in (B). (C)
Corresponding standard deviations at various forces. �e black line is the calculated standard deviation (eq.(S8))
for HP35stab from equilibrium theory, i.e. at in�nite bandwidth. A kinetic simulation (see (A)), that was sampled
at the experimental bandwidth of 300 kHz (green continuous line) shows a signi�cant o�set. Kinetic simulations
at higher bandwidths (represented by the grey dotted line, 9MHz) approach the equilibrium limit.
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HP35wt HP35stab
pD (nm) 24 ± 4
T (K) 303.15

LD (nm) 360 ± 10
K (pN) 450
pp (nm) 0.7

Lp,tot (nm) 11 ± 1
−∆G0 (kBT) 4.9 ± 1.0 9.8 ± 1.0
−∆LN-I (nm) – 5.5 ± 1.0
−∆LI-U (nm) – 5.5 ± 1.0
−∆GN-I (kBT) – 4.9 ± 1.0
−∆GI-U (kBT) – 4.9 ± 1.0

Table S1: Parameters of the equilibrium folding/unfolding model (Figure 1D, F) for a two-state model (HP35wt)
and for a three-state model (HP35stab).
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HP35wt HP35stab
Chemical unfolding
∆GD at 30 ○ C (kJmol−1) −10.1 ± 1.1 −22.0 ± 2.5
∆GD at 30 ○ C (kBT) −4.1 ± 0.5 −8.9 ± 1.0
m (kJmol−1M−1) 3.1 ± 0.1 3.8 ± 0.1
[GdmCl]M (M) 3.26 ± 3.1 5.8 ± 0.2

Force unfolding
∆G0 at 30 ○ C (kJmol−1) −12.1 ± 2.5 −24.3 ± 2.5
∆G0 at 30 ○ C (kBT) −4.9 ± 1.0 −9.8 ± 1.0

Ltot (nm) 10.6 ± 0.8 10.4 ± 1.0
F1/2 (pN) 8.3 ± 0.6 10.3 ± 0.7
∆LU-TS (nm) 5.8 ± 1.0 6.3 ± 1.0
∆LN-TS (nm) 4.8 ± 1.0 4.1 ± 1.0
log10 k0,fold 5.4 ± 0.1 6.1 ± 0.1
log10 k0,unfold 3.3 ± 0.5 1.8 ± 0.5

Table S2: Stabilities and kinetic model parameters for the HP35stab and HP35wt variants. �e kinetic values for
HP35stab assume a two-state mechanism (eq. (S20)).
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