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Analyzing Data with Null Models

After counting the occurrence of motifs in empirical data, a
similar problem is encountered with both static networks motifs
(1) and temporal motifs (2): To say whether a motif count is high
or low, we need to compare it to something. Because typically no
obvious reference is available, it has become common to construct
one artificially by randomizing some aspects of the empirical data.
This kind of reference is commonly known as null models.

Network Motifs and the Configuration Model. Before going into
temporal motifs, it is useful to understand how null models have
been used to analyze static network motifs. The problems that
arise in this context are very similar to those we face when de-
veloping null models for temporal motifs.

The most widely used null model for analyzing network motifs
is no doubt the configuration model, a random network condi-
tional on node degrees (3). [To be precise, Milo et al. (1) orig-
inally used a slightly different null model: They created a random
network conditional on the occurrence of smaller motifs than
those being studied. For the purposes of our discussion here, this
detail is, however, not relevant.] Milo et al. (1) suggested that the
motifs that are “likely to be important” can be identified by
comparing the empirical count C(m) to that in the null model,
C(m). In fact, the term “network motif” was originally used to
refer to only those patterns whose number is so high that it is
unlikely to occur in the null model. In 2004, Artzy-Randrup
et al. (4) pointed out several problems in the use of configuration
model—or in fact any random network—to define important
motifs. They constructed a simple random network on a 30 x 30
lattice where nearby nodes are connected with higher probabil-
ity, and showed that the same motifs are overrepresented in this
network as in the neural network of Caenorhabditis elegans that
was originally studied by Milo et al. Comparison with the con-
figuration model cannot reveal whether the occurrence of motifs
is due to randomness, but only whether the empirical network
was generated by the configuration model.

The logic is made more transparent by writing out the null
hypothesis being tested. Because the only thing the configuration
model retains is the node degrees, comparing motif counts against
those in the configuration model corresponds to testing the null
hypothesis:

Hy : Motif count depends only on node degrees.

If we find motif counts that are unlikely to occur in the data, we
can reject the null hypothesis: Motif counts are not explained by
the node degrees alone.

Of course, the result is nearly always trivial: It is hardly sur-
prising to find that an empirical network has more structure than
the configuration model. Typically, this is also not the result we set
out to obtain. What we want instead is to identify those motifs
whose occurrence is not explained by the configuration model.
However, comparison against the configuration model does not
allow such inference. If the count of even a single motif differs
sufficiently from that expected in the configuration model, Hy is
very likely to be false. In addition, if Hy is false, it cannot explain
the occurrence of any motif, not even of those whose occurrence
happens to agree with that observed in the configuration model.
(There are often some motifs whose count is similar to that in
the configuration model. This is typically due to some kind of
conservation law: If some motifs are overrepresented, others are
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necessarily underrepresented, and some will happen to be ap-
proximately equally common.)

Even if we cannot explain the occurrence of motifs, we might
still be able to obtain useful information by studying the mag-
nitude of deviation from the null model. Any difference observed
between C(m) and C(m) is obviously due to differences between
the empirical data and the null model, and thus to interpret this
deviation we need to know what this difference is. In the case of
the configuration model, for example, this difference consists of
the network structure destroyed by randomizing edges. However,
finding out that some motif is, say, 50% more common because
of the network structure other than node degrees is a very broad
statement. To know more precisely what is causing the differ-
ence, we need an explicit list of features destroyed by the con-
figuration model: correlations between degrees of neighboring
nodes, number of triangles around the nodes, distribution of
shortest path lengths, etc. However, as such list would allow
reconstructing the empirical network, it would constitute a per-
fect network model and is obviously nontrivial to construct. In
addition, even if we did succeed, what is the value of knowing
that a motif is more common because of all of these features? Is
that really what we set out to find? Furthermore, we only observe
the total effect of all removed features. Some of these features
might even have an opposite effect to motif counts.

The value of using null models is not in disproving the null
hypothesis or in finding motifs that are “explained” by the null
model, but in being able to gain information from the deviation
between C(m) and C(m). Because the meaning of this deviation
comes from the difference between the empirical data and the
null model, the null model should be constructed so that this
difference is explicitly known and matches the research question.

Null Models for Temporal Motifs. To illustrate the use of null models
for analyzing temporal motifs, we study a series of synthetic
datasets. All datasets have N =10,000 nodes assigned into two
classes, red (r) and blue (b). In all datasets, we generate events
until there are on average 100 events per edge. We will see that,
as more features are added into the synthetic data, the null
models fail when the data no longer satisfy the corresponding
null hypothesis. We compare the following three null models:
Color-shuffled reference. Color-shuffled reference is constructed by
shuffling the colors of all nodes. Because this null model retains
the original event data except for the assignment of node colors,
the null hypothesis being tested is as follows:

H§ : Motif counts depend on node colors only via the number of
nodes of each color.

As with the configuration model above, it is not easy to list

explicitly the features that are destroyed by this null model. Such
list would contain all possible ways two nodes can differ in
a temporal network, including preferred connectivity, weights of
adjacent edges, and temporal behavior in general.
Time-shuffled reference. Time-shuffled reference is constructed by
shuffling the time stamps of events. Because this null model
retains the aggregate network and the number of events on each
edge, the null hypothesis being tested is as follows:

HI' : Motif counts do not depend on temporal correlations between
events.

Because this null hypothesis states explicitly what is being
removed, it provides an interpretation for the deviation from
the null model: Comparison against this reference reveals that
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a motif is more or less common because of temporal correlations.
Whether this information is useful is another matter. “Temporal
correlations” is a very broad notion, comprising the temporal dis-
tribution of events on a single edge as well as the correlations of
events on neighboring edges.

Color-equivalent reference. Color-equivalent reference is the one
described and used in the main text. Because this null model
removes differences in temporal behavior between node colors,
the null hypothesis is as follows:

HE : Motif counts do not depend on differences in temporal behavior
between node colors.

As with the time-shuffled reference above, this null hypothesis
states explicitly what is being removed, allowing us to give
a meaning for the difference between C(m) and C(m): This
difference reveals how much more or less common a motif is
because of differences in the temporal behavior of node colors,
or in other words, those aspects of node colors not observable in
the weighted aggregate network.

We begin with a simple synthetic data where the two node
colors have different cardinality: A node is colored red with
a probability of 40%; otherwise, the node is blue. To generate the
event data, we first create an underlying network by connecting
nodes at random with probability P=0.001. Events are then
generated so that at any time step an event starts on a given edge
with probability g =0.0001, assuming neither node is currently
involved in an event. The duration of the events is drawn from
a geometric distribution with mean 10.

For these simple data, all three null hypotheses are true, and, as
expected, the z-score distributions shown in Fig. S1 are all con-
centrated around zero. Only a small change is needed to make
HOC false; this happens for example if the edges of the underlying
network are not independent of node colors. To illustrate, Fig.
S2A4 shows the z-score distributions when the probability of an
edge between nodes depends on node colors so that P, =0.0012,
P, =0.0008, and Py, =0.001. A similar result is obtained if the
event probabilities depend on node colors. Fig. S2B shows the re-
sult when the underlying network is uniform but the event prob-
abilities between different colors are g,, =0.00012, g,, = 0.00008,
and gpp =0.0001. The other two null hypotheses, however, con-
tinue to hold: In both cases, the events are uncorrelated and
there are no temporal differences between node colors.

In empirical datasets, the events are practically never in-
dependent of each other. To illustrate the effect this has on the
null model analysis, we add correlations to our synthetic data.
Random events occur as before, but in addition triggered events
may take place on neighboring edges after each random event.
The probability of these triggered events decreases exponentially
with time, with parameters selected so that with probability
P.=0.02 at least one triggered event occurs on a neighboring
edge during the following =50 time steps. As shown by Fig.
S2C, H! is now false but both HS and HE are true.

Combining all of three features—homophily, different event
probabilities, and correlated events—produces data where both
H§ and H[ are false even though there are still no temporal
differences between node colors (Fig. S34). To see how the null
models perform when there are temporal differences between
node colors, we increase the occurrence of some causal two
chains exactly as done in the main text: If a random event occurs
between two nodes of the same color, for the following 7, =100
time steps the recipient has an additional probability of P, =0.001
to initiate an additional triggered event toward a random neighbor
other than the source of the original random event.

The resulting z-score distributions are shown in Fig. S3B. The
color-shuffled reference is clearly unable to detect the triggered
two chains. The time-shuffled reference is slightly better, as the
z scores for these motifs are even higher than for other motifs.
Unfortunately, real empirical data rarely have such pronounced

Kovanen et al. www.pnas.org/cgi/content/short/1307941110

temporal differences; typically, they would be lost among all
other motifs that are still significantly overrepresented.

The z-score distribution for the color-equivalent reference has
three peaks. Although most motifs show no difference (z~0),
a small number of motifs have z > 0 and a similar number has
z < 0. To see what these motifs are, Fig. S4 shows all two-event
temporal motifs ordered by the ratio r(m) corresponding to this
null model. As expected, the motifs with z > 0 are causal two
chains where the first event takes place between nodes of the
same color. In addition, because we measure the relative occur-
rence, the motifs with z < 0 are those causal two chains where the
first event takes place between nodes of different colors.

A closer look at Fig. S4 reveals that only three of the causal two
chains have z > 0. The fourth causal two chain expected to be
overrepresented, the one with three red nodes, has r(m)=0.98
and is in fact less common than in the reference. This reason is
that the object of comparison, C(m), is based on average un-
colored motif counts. Because the three most common causal
two chains have very high occurrence—due to blue nodes being
more common—they hike up the value of C(m) to the extent
that it becomes larger than the actual motif count of the all-red
causal two chain. [The all-red causal two chain is still over-
represented if we compare the absolute count C(m) in these data
to that in data that are otherwise identical but lack the prefer-
ential triggering.] Another way to understand this is to think of
C(m) as the weighted average of colored motif counts, with
weighting done by the entire structure of the aggregate network.
Increasing the motif count of some colored variants will neces-
sarily reduce the relative occurrence of others.

Proof That C(m) Is an Unbiased Estimate
To see that C(m) is an unbiased estimate of C(m) when Hj is
true, we write its expected value as follows:

E [C(m)]

I
g
s
o
B

> Y E[Com)]

W (|me=m w=w

=" l{time=m,w=w}|-E[Ci(m)we=w].

However, the empirical motif count can be written as follows:

Z Cg(m)

llme=m

=2 >
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C(m)

C[(m)

where C,(m) is the average count of motif m at locations with
weight sequence w. Now E[C(m)|=C(m) if E[C/(m)|w,=w]=
Cy(m)Vw, which is indeed the case when Hj is true.

Generating Samples from the Null Model

Fig. S5 presents an algorithm that can be used to generate sam-
ples from the null model described in Materials and Methods.
The input consists of the temporal network (event set E), the
maximum number of events in temporal motifs (r1p,x), number
of independent samples to generate (Ngampics ), and the time window
At used to identify temporal motifs. The algorithm outputs motif
counts in the empirical data (C) and the motif counts sampled
from null model (C), corresponding to the count of motif 72 under
the null hypothesis that motif counts do not depend on node types,
given the structure of the weighted aggregate network.
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The algorithm consists of three parts. On lines 2-8, we identify
all temporal motifs in the empirical data and count the occur-
rence of motifs by location. This results in two data structures:
M((] gives the number of temporal motifs at location ¢ (note that
the corresponding motif m, is uniquely defined by ¢), and C[m]
gives the total count of motif m in the empirical data.

On lines 9-18, these two data structures are used to construct
the distributions P(m*,w) for all combinations of the untyped
motif m* and topology w. The result is a data structure P such
that P[(m* w)|[C] is the number of locations with weight se-
quence w and topology defined by m* that have exactly C oc-
currences of the motif m*. Note that node colors are not used
during this step; the distributions are constructed under the null
hypothesis that node colors have no effect, in which case the
distributions would be identical for different node colors.

On lines 20-26, we draw samples from P(m*, w). We again go
through all locations, but this time take into account the node
colors. Because the final sample C(m) is a sum over only those
locations that have correct node colors, the structure of the ag-
gregate network is taken into account. Note that it is relatively
cheap to generate multiple samples for C(m) (lines 24-26); the
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3. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree
distributions and their applications. Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2):
026118.

HE (color-shuffled)

HI (time-shuffled)

only thing that needs to be repeated is drawing samples from
P(m*,w).

Homophily and Sex Differences for Calls and SMS

Tables S1 and S2 show full results on temporal homophily for
both calls and SMS. Parts of Table S1 and S2 are presented in the
main text.

Sensitivity of Results to the Choice of At

The exact value of the time window used in the analysis, At =10
min, is of course arbitrary. As discussed in ref. 5 in the context of
aggregation of temporal networks, selecting the proper length
for a time window is a balancing act. Low values of At decrease
motif counts and therefore increase noise, whereas high values of
At smooth the results as unrelated events are more likely to be
connected.

In our case, however, the ratios r(m) are not sensitive to the
exact value of Az, as shown in Fig. S6: The difference the values
of r(m) between Ar=10 min and At=1 h is still comparable to
the difference between 2 consecutive months calculated with
At =10 min.

4. Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004) Comment on “Network
motifs: Simple building blocks of complex networks” and “Superfamilies of evolved
and designed networks”. Science 305(5687):1107, author reply 1107.

. Sulo R, Berger-Wolf T, Grossman R (2010) Meaningful selection of temporal resolution
for dynamic networks. Proceedings of the Eighth Workshop on Mining and Learning
with Graphs (ACM, New York), pp 127-136.
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Fig. S1. The distribution of z scores of all colored two-event motifs, presented separately for the three null models. The gray line shows the Gaussian dis-
tribution with zero mean and unit variance for reference. The data have been artificially generated as follows. We first create an undirected, unweighted
underlying network with N=10,000 nodes. The nodes are randomly assigned one of two colors: red with probability of 40% and blue otherwise. An edge is
created between any two nodes with probability P = 0.001. Events are uncorrelated: An event occurs on an edge with probability g = 0.0001 per times step
(assuming neither node is currently involved in an event) with event duration drawn from a geometric distribution with mean 10. Events are generated from
this process until there are on average 100 events per edge. Two-event temporal motifs are then identified with time window At=100. The distributions
shown are averages of 20 independent datasets; for each dataset, we generate 20 values from each null model to calculate x(C(m)) and 6(C(m)). Because for
these simple data all three null hypotheses are true, the z-score distributions are centered around zero.
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Fig. 2. Three variations of the synthetic data used in Fig. S1. (4) The underlying network is modified so that edges are preferentially created between nodes
of the same color. Hg is false because the number of nodes of each color is no longer sufficient to explain the occurrence of motifs. (B) The event probabilities
are changed so that events are more likely to occur between nodes of the same color. H is false for the same reason as above. (C) Now the underlying network
is uniform and the occurrence of events is independent of node colors, but the events are correlated between neighboring edges. This time H] is false (z > 0)
but H§ is true. In all three datasets, H5 is true because there are no temporal differences between node colors.
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Fig. $3. (A) Combining the three modifications used in Fig. S2 A-C results in both Hg and Hg being false; Hg is still (approximately) true. (B) Results after
adding temporal differences to the data used in A. Only H5 can distinguish motifs that really exhibit temporal differences (|z| > 0) from all others (z~0).
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Fig. S4. All two-event motifs corresponding to Fig. $3B, ordered by ratio r(m)=C(m)/C(m). Both ratio and z score are shown below each motif. The three
most common motif are causal two chains where the first event takes place between nodes of same color; these have been artificially made more common.
However, the fourth motif in this group—causal two chain where all nodes are red—has r(m)=0.98, and is thus less common than in the reference. This low
value of r(m) occurs not because C(m) is low—this absolute count is significantly higher than in a similar data without the triggered events—but because C(m)
is so high. The value of C(m) is based on all causal two chains, and this value becomes large because the first three motifs are so common.
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: function SAMPLENULLMODEL(E, Nimax, Nsampies, At)
Initialize M as Map(¢ — N).
Initialize C' as Map(m — N).
for G} in VALIDSUBGRAPHS(F, Nyax, At) do
Let ¢ be the location of G,.
Let m be the colored motif corresponding to Gy.
Increment M [/].
Increment C[m].

Construct weighted aggregate network G from FE.
Initialize P as Map((m*,w) — Map(N — N))
for ¢ in LOCATIONS(G, Nmax) do
Let mj be the uncolored motif defined by Z.
Let wy be the weight sequence at £ in G.
if / € M then
Let Cy = M[@]
else
Let C, =0
Increment P[(m, w)][Cy].
Initialize C' as Map(m — List)
for ¢ in LOCATIONS(G, nmax) do
Let my be the colored motif defined by £.
Let mj be the uncolored motif defined by Z.
Let wy be the weight sequence at £ in G.
for i in 1... Negmpies do
Let Cy be a sample from P[(m},wy)]
Add Cy to Clmyi].
return C’,é

Fig. S5. Algorithm for generating samples from the null model. E is the event set that defines the temporal network, nmay is the maximum number of events
in temporal motifs to study, and Ngamples is the number of independent samples to generate for each C(m). The function vAUDsUBGRAPHS goes through all valid
temporal subgraphs with at most nmax events. The function LocaTions goes through all locations—ordered sequences of edges such that the underlying graph
formed by these edges is connected—in the aggregate network G that have at most nmax edges. The function returns both the empirical motif counts C and the

sampled counts C.
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Fig. S6. The results are not sensitive to the exact value of At. The plot shows the correlation coefficient p between r(m) calculated for month 2 data with
At=10 (denoted by the vertical line), and month 1 data with At values ranging from 5 s to 4 h. From At=5 min to At=1 h the correlation coefficients is close
to that of the 2 consecutive months with the same time window. The calculation includes all two-event motifs that occur at least 10 times in every dataset (only

1,214 different motifs satisfy this condition

when At=5 s, compared with 31,816 motifs with At=10 min).
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Table S1. Temporal homophily of calls (upper) and SMS (lower) for different motifs

Communication type Motif A G P AANG AAP GAP AANGAP

Call Repeated contact 1.08, 1.11 1.12, 1.09 1.09, 1.13 1.12, 1.1 1.05, 1.1 1.11, 1.1 1.09, 1.1
Returned contact 1.04, 1.01 1.02, 1.01 0.98, 1.06 1.06, 1.01 1.00, 1.02 0.98, 1.03 1.02, 1.02
Noncausal chain 1.05, 1.03 1.05, 1.03 1.05, 1.01 1.11, 1.03 1.08, 1.03 1.06, 1.03 1.18, 1.03
Causal chain 1.03, 1.02 1.04, 1.02 1.05, 0.98 1.08, 1.02 1.07, 1.02 1.07, 1.01 1.16, 1.02
Out-star 1.12, 1.03 1.06, 1.03 1.07, 1.01 1.22, 1.04 1.18, 1.04 1.09, 1.03 1.32, 1.04
In-star 1.09, 1.04 1.07, 1.04 1.03, 1.06 1.13, 1.04 1.08, 1.04 1.06, 1.04 1.16, 1.04

SMS Repeated contact 1.03, 1.02 1.03, 1.02 0.99, 1.06 1.04, 1.02 0.99, 1.03 1.00, 1.03 0.99, 1.03
Returned contact 0.99, 1.02 1.03, 1.00 1.00, 1.03 1.00, 1.02 0.98, 1.02 1.02, 1.01 0.99, 1.02
Noncausal chain 1.02, 0.97 1.09, 0.95 0.97, 1.02 1.16, 0.97 1.04, 0.97 1.09, 0.96 1.24, 0.97
Causal chain 0.99, 0.98 1.05, 0.97 0.95, 1.05 1.09, 0.98 1.00, 0.98 1.04, 0.97 1.11, 0.98
Out-star 1.10, 1.00 1.17, 0.95 1.04, 0.98 1.35, 1.00 1.17, 1.00 1.21, 0.97 1.49, 1.01
In-star 1.02, 1.00 1.13, 0.97 1.02, 0.98 1.18, 0.99 1.06, 0.99 1.16, 0.97 1.33, 0.99

The columns correspond to different attributes: age, sex, and payment type. The first value in each cell is the mean r(m) for motifs where all nodes have the
same attribute value (for example, all have the same age in column A). The second value gives the mean for all other motifs. If the first value is larger than the
second, the motif has homophily with respect to those attributes: Cases where all nodes have the same value are relatively more common than others. Welch’s
t test was used to test for equality; bold denotes P <0.01, and italic denotes P < 0.05 (including a Bonferroni correction corresponding to the number of tests

in each table).

Table S2. Homophily for calls (upper) and SMS (lower) when
either sex or payment type is fixed

G =Fe G = Ma P =Po P="Pr
Repeated contact  1.11, 1.11 1.13, .10 0.90, 1.18  1.27, 1.05
Returned contact 1.02, 1.01 1.02, 1.02 1.00, 1.02  0.95, 1.04
Noncausal chain 1.08, 1.02 1.01, 1.04 1.06, 1.00 0.96, 1.04
Causal chain 1.08, 1.01 0.98, 1.03  1.06, 0.97 0.92, 1.03
Out-star 1.10,1.03 1.01,1.04 1.05 17.03 1.11, 1.03
In-star 1.11, 1.03 1.01, 1.05 1.03, 1.06 1.03, 1.05
Repeated contact  1.02, 1.03  1.04, 1.02 0.98, 1.04  1.01, 1.03
Returned contact 1.01, 1.02 1.05, 1.00 0.97, 1.03 1.04, 1.01
Noncausal chain 1.08,096 1.09,0.97 0.91,1.03 1.04, 0.96
Causal chain 1.04,098 1.06,0.98 0.89, 1.05 1.05, 0.96
Out-star 1.18,0.98 1.15,1.00 1.05,0.99 1.01, 1.01
In-star 1.09,099 1.79,0.99 1.02,1.00 1.01, 1.00

The first value is average r(m) for motifs where all nodes have the same
value of sex (either female or male), or the same value of payment type
(postpaid or prepaid). The second value is average r(m) for all other motifs.
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