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A. Image Analysis
High-speed movies were analyzed using custom-made Matlab
software (MathWorks Inc); our image analysis pipeline is illustrated
inFig. S1. In afirst step, estimates for position and orientation of the
cell body in a movie frame were obtained by a cross-correlation
analysis using rotated template images. In a second step, these
position and orientation estimates were refined by tracking the
bright phase halo surrounding the cell. The first and second area
moments of the cell rim provide accurate estimates for the center of
the cell body and its long orientation axis. While the tracking
precision of the first step amounts to <500 nm for the position and
a few degrees for the orientation, these values are reduced to
<50 nm and <0.5° after the second step, respectively. Special care
was taken to reduce any potential bias of the flagellar phase on
the cell-body tracking; for example, the cell rim close to the fla-
gellar bases was obtained by interpolation instead of direct track-
ing. The flagellar base is visible as a continuous, parabola-shaped
curve that connects the proximal ends of the two flagella; tracking
of this flagellar base was done by a combination of line scans and
local fitting of a Gaussian linemodel (step 3). Flagella were tracked
by advancing along their length using exploratory line-scans in
a successive manner (step 4). Flagellar tracking can be refined by
local fitting of a Gaussian line model. A movie consisting of 1,000
frames can be analyzed in an automated manner within 10 h on
a standard personal computer. Movies from red-light illumination
conditions were of lower quality and required manual correction of
the automated tracking results for each frame.

B. Flagellar Shape Analysis
Weemploy a nonlinear dimension reduction technique to represent
tracked flagellar shapes as points in a low-dimensional abstract
shape space. In a first step, smoothed tracked flagellar shapes
corresponding to one cycle of synchronizedflagellar beating (shown
in Fig. 1A) were used to define the basis of the shape space. Fla-
gellar shapes can be conveniently represented with respect to the
material frame of the cell using a tangent angle representation (1, 2).
In terms of this tangent angle θðsÞ, the xðsÞ and yðsÞ coordinates of
the flagellar midline as functions of arclength s along the flagel-
lum can be expressed as

xðsÞ= xð0Þ+
Zs

0

dξ  cos½α+ θðξÞ� and 

yðsÞ= yð0Þ+
Zs

0

dξ  sin½α+ θðξÞ�:
[S1]

Here, α is the orientation angle of the long axis of the cell body
(Fig. 1A), which implies that θðξÞ characterizes flagellar shapes
with respect to a material frame of the cell body. By averaging
the tangent angle profiles θðs; tÞ over a full beat cycle, we define
a time-averaged flagellar shape characterized by a tangent angle
θðsÞ. To characterize variations from this mean flagellar shape,
we employed a kernel principal component analysis (PCA) (3).
The kernel used to compute the Gram matrix D for the kernel
PCA must account for the 2π periodicity of the tangent angle
data and was taken as Dij =

R L
0 ds  cos½θðs; tiÞ− θðs; tjÞ�. The first

three shape eigenmodes account for 97% of the spectrum of D
and are shown in Fig. S2A. The relative contributions to the
spectrum read 67% (first mode), 18% (second mode), and 12%
(third mode). Whereas the first mode θ1ðsÞ (blue) describes

nearly uniform bending of the flagellum, the second mode θ2ðsÞ
(green) and the third mode θ3ðsÞ (red) together comprise the
components of a traveling bending wave.
Next, any flagellar shape can be projected onto the shape space

spanned by these three shape modes: Given a flagellar midline
with coordinates xðsÞ and yðsÞ, we seek the optimal approximating
shape with coordinates x̂ðsÞ, ŷðsÞ whose tangent angle θ̂ðsÞ is a
linear combination of the fundamental shape modes:

θ̂ðsÞ= θðsÞ+ β1θ1ðsÞ+ β2θ2ðsÞ+ β3θ3ðsÞ: [S2]

The coefficients β1, β2, and β3 are obtained by a non-linear fit that
minimizes the squared Euclidean distance

R L′
0 dsjxðsÞ− x̂ðsÞj2 +

jyðsÞ− ŷðsÞj2. This procedure is robust and works even if flagellar
shapes could only be tracked partially with tracked length L′ shorter
than the total flagellar length L. Note that for nonsmoothed fla-
gellar shapes the tangent angle representations can be noisy and are
thus less suitable for fitting as compared to x, y coordinates.
A time sequence of tracked flagellar shapes thus results in

a point cloud in the shape space parameterized by the shapemode
coefficients β1, β2, and β3. We fitted a closed curve to the torus-
like point cloud (Fig. S2B, solid line). This closed curve repre-
sents a limit cycle of periodic flagellar beating. Each tracked
flagellar shape can be assigned the “closest” point on this limit
cycle (i.e., the point for which the corresponding flagellar shape
has minimal Euclidean distance). By choosing a phase angle
parameterization for the limit cycle, the phase angle of each
flagellar shape is determined modulo 2π. A time-series of fla-
gellar shapes thus yields a time-series of the flagellar phase angle
φðtÞ. The phase angle parameterization of the limit cycle had
been chosen such that the flagellar phase angle φ and its time
derivative are not correlated. Finally, the zero point φ= 0 was
chosen such that the corresponding flagellar shape was nearly
straight and perpendicular to the long cell axis.

C. Computation of Hydrodynamic Friction Forces
For our hydrodynamic computations, we represented a Chlamy-
domonas cell by an ensemble of N = 300 equally sized spheres of
radius a= 0:25  μm. The cell body was chosen spheroidal and is
represented by 272 spheres that are arranged in a symmetric
fashion to retain mirror symmetries. Each flagellum is repre-
sented by a chain of 14 spheres that are aligned along a flagellar
midline with equidistant spacing. The shapes of the flagellar
midlines depend on respective phase angles φL and φR for the
left and right flagellum. These flagellar shapes were taken from
experiment for one full period of synchronized beating and are
shown in Fig. 1A. We assume that the 272 spheres constituting
the cell body move as a rigid sphere cluster. Each of the flagellar
spheres represents a cluster with just one sphere, which results in
a total of n= 2 · 14+ 1= 29 sphere clusters. We then computed
the 6n× 6n grand hydrodynamic friction matrix G for this en-
semble of n spheres clusters using a freely available hydrody-
namic library based on a Cartesian multipole expansion technique
(4). Recall that the grand hydrodynamic friction matrix G relates
the forces and torques exerted by the 6n sphere clusters to their
translational and rotational velocities (5):

P0 =G · _q0: [S3]

Here, _q0 denotes a 6n vector that combines the translational and
rotational velocity components of the n sphere clusters,
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_q0 =
�
v1x; v1y; v1z;ω1x;ω1y;ω1z; . . . ;ωnz

�
; [S4]

whereas the 6n vector P0 combines the components of the re-
sultant hydrodynamic friction forces and torques,

P0 =
�
F1x;F1y;F1z;T1x′ ;T1y′ ;T1z′ ; . . . ;Tnz′

�
: [S5]

(Primed torques represent torques with respect to the center of
the respective sphere cluster.) Fig. 2C in the main text shows
a submatrix of the grand friction matrix, which was defined as
Gij;yy =G6i−4;6j−4, i; j= 1; . . . ; n. In this figure, it was assumed that
the long cell body axis is aligned with the y axis of the laboratory
frame (i.e., α= 0), which implies that the submatrix relates mo-
tion in the direction of the long cell axis and the hydrodynamic
force components projected on this axis.
For our hydrodynamic computations, the multipole expansion

order was chosen as three. An estimate for the accuracy of our
computation could be obtained by increasing the expansion order
parameter, which changed the computed friction coefficients by
less than 1%. Initial tests confirmed that the frictionmatrix of only
the cell body gave practically the same result as the analytic
solution for the enveloping spheroid (6); similarly, the computed
frictionmatrix of only a single flagellummatched the prediction of
resistive-force theory (7) assuming a flagellar radius equal to the
sphere radius. Note that the precise value of the flagellar radius is
expected to affect hydrodynamic friction coefficients only as
a logarithmic correction (8).
Below, we consider an extension of the theoretical description

given in the main text that additionally considers the possibility of
an elastically anchored flagellar base, which allows for pivoting of
the flagellar basal apparatus (Fig. S9). In this case, the flagellar
midlines were rotated by an angle ψ .
A set of 2,400 precomputed configurations was then used to

construct a spline-based lookup table of the (reduced) hydro-
dynamic friction matrix as a function of the degrees of freedom
φL, φR, and ψ . The interpolation error was confirmed to be on
the order of 1% or less. This lookup table was then used for the
numerical integration of the (stiff) equations of motion, Eqs. 1
and S17.

D. Generalized Hydrodynamic Friction Forces
We employ the framework of Lagrangian mechanics of dissipative
systems (9) to define generalized hydrodynamic friction forces and
derive an equation ofmotion for the effective degrees of freedom in
our theoretical description of Chlamydomonas swimming and
synchronization. The 6n degrees of freedom q0 for the n sphere
clusters used in our hydrodynamic computations are enslaved by
the five effective degrees of freedom in our coarse-grained theory
(Fig. 1). Below, one more degree of freedom, ψ , is introduced to
characterize pivoting of an elastically anchored flagellar basal ap-
paratus. We thus have

q0 = q0ðqÞ; [S6]

wherewe introduced the six-component vectorq= ðx; y; α;φL;φR;ψÞ
that comprises the six effective degrees of freedom. The reduced
6× 6 hydrodynamic friction matrix Γ for these six effective degrees
of freedom can be computed from the grand hydrodynamic friction
matrix G as

Γ=LT ·G ·L [S7]

with a 6n× 6 transformation matrix L given by refs. 10 and 11:

Lij = ∂ _q0;i=∂ _qj: [S8]

The rate of hydrodynamic dissipation can now be equivalently
written as a quadratic function of either _q0 or _q :

R= _qT0 ·G · _q0 = _qT ·Γ · _q: [S9]

The generalized hydrodynamic friction coefficients Γij are de-
picted in Fig. S3. In this context, generalized hydrodynamic
friction forces can be defined as

Pj =Γjx _x+Γjy _y+Γjα _α+ΓjL _φL +ΓjR _φR +Γjψ _ψ ; j= x; y; α;L;R;ψ :

[S10]

Interestingly, the generalized hydrodynamic friction force conju-
gated to one degree of freedom depends also on the rates of the
change of the other degrees of freedom, which implies a coupling
between the various degrees of freedom. This fact is illustrated by
Fig. S4. Fig. S4A depicts the translational velocities of the flagellar
spheres caused by pure yawing of the cell body with rate _α. This
motion is characterized by a 6n vector of velocity components,
_qðαÞ0 =L · ð0; 0; _α; 0; 0; 0ÞT . Similarly, the beating of the left flagel-
lum induces hydrodynamic friction forces as shown in Fig. S4B. The
resultant force (and torque) components are combined in the
6n vector PðLÞ

0 =G ·L · ð0; 0; 0; _φL; 0; 0ÞT . Fig. S4 indicates that
the scalar product _qðαÞ0 · PðLÞ

0 = _αΓαL _φL does not vanish, which
implies a nonzero friction coefficient ΓαL and thus a coupling
between cell-body yawing and flagellar beating.
In our theoretical description, the phase dynamics of the left

flagellum, say, is governed by a balance of the generalized hy-
drodynamic friction force PL and an active driving force QL,
similarly QR =PL for the right flagellum. In the case of free
swimming, force and torque balance imply Px =Py = 0 and Pα = 0.
Together with an equation for Pψ , these equation allow to self-
consistently solve for the rate of change _q of the 6 degrees of
freedom. If one degree of freedom were constrained, qj = 0, the
corresponding force equation becomes void, since a constraining
force Qj equal to Pj then balances the generalized hydrodynamic
friction force Pj associated with this degree of freedom.
In general, the active driving forces QL and QR will depend on

the flagellar phase. This phase dependence is fully determined by
the requirement that the flagellar phase speeds should be con-
stant, _φj =ω0, in the case of synchronized flagellar beating with
δ= 0. Here, ω0 denotes the angular frequency of synchronized
flagellar beating. Explicitly, we find

QLðφLÞ=ω0

h
ΓLLðφL;φLÞ+ΓLRðφL;φLÞ

− 2Γ2
LyðφL;φLÞ

�
ΓyyðφL;φLÞ

i
: [S11]

An analogous expression holds for QRðφRÞ. Note that the gener-
alized active driving forces are conjugate to an angle, and therefore
have the physical unit piconewtons times micrometer. These phase-
dependent active driving forces can be written as potential forces
Qj =−∂U=∂φj, j=L;R, where the potential U reads

U = −
ZφL

−∞

dφLQLðφLÞ−
ZφR

−∞

dφRQRðφRÞ: [S12]

The potential U continuously decreases with time, indicating the
depletion of an internal energy store and the dissipation of energy
into the fluid during flagellar swimming. The rate of hydrody-
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namic dissipation equals the rate at which potential energy is
dissipated:

R= − _U =QL _φL +QR _φR: [S13]

E. Analytic Expression for the Flagellar Synchronization
Strength
We present details on the derivation of Eqs. 5 and 6 for the
synchronization strength λ in the case of the reduced equations
of motion, Eqs. 2–4. We assume equal intrinsic beat frequencies,
ωL =ωR =ω0, and a small initial phase difference, 0< δð0Þ � 1.
To leading order in δ, we find relations that link the rotation rate
_α and the rate _δ at which the phase difference changes,

kα+ ρðφ;φÞ _α=−d½νðφÞδ�=dt [S14]

_δ= − 2μðφÞ _α: [S15]

Here φ≈ω0t denotes the mean flagellar phase. The first equation
describes how flagellar asynchrony causes a yawing motion of the
cell body, and the second equation describes how this yawing
motion then changes the flagellar phase difference. In the absence
of any elastic constraint for yawing, k= 0, we can solve for _δ :

ðρ− 2μνÞ _δ= 2μν′ω0δ: [S16]

Now, Eq. 5 follows from Eq. S16 using λ= −
R T
0 dt  _δ=δ and

a variable transformation φðtÞ=ω0t+OðδÞ.
In the case of a very stiff elastic constraint with k � ρω0, we

make use of the fact that variations of the phase difference δ
during one beat cycle will be small compared to its mean value
δ0 = hδi. As a consequence, Eq. S14 can be approximated as
kα= − ν′ω0δ0. Using this approximation and Eq. S15, Eq. 6
follows.

F. Comparison of Experiment and Theory
We can compare instantaneous swimming velocities predicted by
our hydrodynamic computation with experimental measurements
and find favorable agreement (Fig. 3 and Fig. S5). Note that wall
effects present in our experiments, but not accounted for by our
hydrodynamic computations, are expected to reduce translational
velocities (but less so rotational velocities) (12). The hydrody-
namic computations are based on a fixed flagellar beat pattern
parameterized by a flagellar phase angle, which was obtained
experimentally for one beat cycle with synchronized beating (Fig.
1A). The good agreement between theoretical predictions and
experimental measurements for the instantaneous swimming ve-
locities further validate our reductionist description of the flagellar
shape dynamics by just a single phase variable for each flagellum.
Next, we tested the applicability of the reduced equations of mo-
tion, Eqs. 2–4, in the experimental situation. For this aim, we re-
constructed the coupling functions μðφÞ, νðφÞ and ρðφÞ from
experimental time series data for _α, _φL, and _φR. The coupling
functions were represented by truncated Fourier series and the
unknown Fourier coefficients determined by a linear regression of
Eqs. 2, 3, or 4, respectively (Fig. S6). Repeating this fitting pro-
cedure for data from six different cells gave consistent results (Fig.
S7). Moreover, the phase dependence of the fitted coupling func-
tions agrees qualitatively with our theoretical predictions. Note that
our simple theory does not involve any adjustable parameters.

G. An Elastically Anchored Flagellar Basal Apparatus
In the main text, we had assumed for simplicity that the flagellar
base is rigidly anchored to the cell body. Whereas the proximal
segments of the two flagella are tightly mechanically coupled with
each other by so-called striated fibers to form the flagellar basal
apparatus, the flagellar basal apparatus itself is only connected to

an array of 16 long microtubules spanning the cell (13). We now
consider the possibility that this anchorage allows for some
pivoting of the flagellar basal apparatus as a whole by an angle ψ
(Fig. S9A). In addition to the 5 degrees of freedom of Chlamy-
domonas beating and swimming considered in the main text (Fig.
1), we now include this pivot angle ψ as a 6th degree of freedom.
The rate of hydrodynamic dissipation is now given by R= _xPx +
_yPy + _αPα + _φLPL + _φRPR + _ψPψ , with Pψ being the generalized
hydrodynamic friction force conjugate to the pivot angle ψ . As-
suming Hookean behavior for the elastic basal anchorage with
rotational pivoting stiffness k, we readily arrive at an equation of
motion that reads in the case of free swimming:

ð_x; _y; _α; _φL; _φR; _ψÞT =Γ−1�0; 0; 0;QL;QR; − kψ
�T
: [S17]

Fig. S9B shows flagellar synchronization for a free-swimming
cell with elastically anchored flagellar base: Although some basal
pivoting occurs as a result of flagellar asynchrony, the swimming
and synchronization behavior is very similar to the case of a rigidly
anchored flagellar base, as shown in Fig. 4A. For a cell that can
neither translate nor yaw, however, the situation is different (Fig.
S9C). We find strong flagellar synchronization provided the elastic
stiffness k is not too large. Flagellar synchronization by basal
pivoting is thus effective also for a fully clamped cell. In contrast,
for a rigidly anchored flagellar base, the synchronization strength λ
would be relatively weak in this case, being due only to direct
hydrodynamic interactions between the two flagella.
Flagellar synchronization by basal pivoting is conceptually very

similar to synchronization by cell-body yawing as discussed in the
main text. In the case of a fully clamped cell, we can approximate
the synchronization dynamics by virtually the same generic
equation of motion as Eqs. 2–4, when we substitute ψ for α:

_φL =ω0 − μðφLÞ _ψ ; [S18]

_φR =ω0 + μðφRÞ _ψ ; [S19]

kψ + ρðφL;φRÞ _ψ = − νðφLÞ _φL + νðφRÞ _φR: [S20]

Here, the coupling functions μ, ν, and ρ play a similar role as the
previously defined μ, ν , and ρ for Eqs. 2–4 and show a qualitatively
similar dependence on the flagellar phase (Fig. S10). To derive Eqs.
S18–S20, we neglected direct hydrodynamic interactions between
the two flagella and approximated the active driving forces by
QLðφÞ=ω0ΓLLðφ;φÞjψ=0 and QRðφÞ=ω0ΓRRðφ;φÞjψ=0. The cou-
pling functions are defined as μðφÞ=−ΓLψ ðφ;φÞ=ΓLLðφ;φÞjψ=0,
νðφÞ= −ΓψLðφ;φÞjψ=0, and ρðφ;φÞ=Γψψ ðφL;φRÞjψ=0. This choice
retains the key nonlinearities of the full equation of motion (Fig.
S3). Eq. S18 states that pivoting of the flagellar basal apparatus
with _ψ > 0 slows down the effective stroke of the left flagellum (and
speeds up the right flagellum). For synchronized flagellar beating,
there will be no pivoting of the flagellar base. For asynchronous
beating, however, the flagellar base will be rotated out of its sym-
metric rest position by an angle ψ if the stiffness k is not too large.
Any pivoting motion of the flagellar base during the beat cycle
changes the hydrodynamic friction forces that oppose the flagellar
beat, which in turn can either slow down or speed up the respective
flagellar beat cycles, and thus restore flagellar synchrony.
To gain further analytical insight, we study the response of

the dynamical system in Eqs. S18–S20 after a small pertur-
bation 0< δð0Þ � 1. To leading order in δ=φL −φR, we find
(with φ≈ω0t)

kψ + ρðφ;φÞ _ψ =−d½νðφÞδ�=dt; [S21]

_δ= − 2μðφÞ _ψ : [S22]
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In the biologically relevant case of a relatively stiff basal
anchorage of the flagellar basal apparatus with k � ρω0,
we find for the synchronization strength a result analogous
to Eq. 6:

λ= −
I2π

0

dφ   
μðφÞν″ðφÞ

k=ω0
: [S23]
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0. Raw movie frame

2. Cell rim detection

4. Flagellar tracking 5. Final result

3. Flagellar base

1. Rotated templates

Fig. S1. Image analysis pipeline used to automatically track planar cell position and orientation as well as flagellar shapes in high-speed movies of swimming
Chlamydomonas cells. (0) A typical movie frame. (1) Rotated template images used for a cross-correlation analysis to estimate cell position and orientation in
a movie frame. (2) The cell body outline was tracked by detecting intensity maxima (green) of line scans along rays (shown in blue), which emanate from the
putative cell-body center. From the cell-body outline, we obtain refined estimates for cell position and orientation. (3) The position of the flagellar base was
then determined using a fan of line scans (along the blue lines), followed by a line scan (green) in a direction perpendicular to the maximal intensity direction
(red). (4) Finally, flagellar shapes were tracked in a successive manner using combinations of line scans similar to those in step 3. (5) The final result of our
tracking software provides for each frame: cell body position (red dot) and orientation (green arrow), cell body rim (green), as well as center lines of the two
flagella (blue).
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Fig. S2. We represent a single flagellar shape by n= 3 shape coefficients as a point in an abstract shape space that is spanned by three principal shape modes.
(A) The principal shape modes were determined by employing a kernel PCA to the tangent angle representation θðsÞ of smoothed flagellar shapes that were
tracked from the left flagellum of cell no. 2 during one beat cycle of synchronized flagellar beating. From the PCA, we obtained three dominant shape modes
with respective tangent angle representations θ1ðsÞ, θ2ðsÞ, and θ3ðsÞ as shown. Together, these principal shape modes account for 97% of the variance of this
tangent angle dataset. For sake of illustration, exemplary flagellar shapes corresponding to the superposition of the mean flagellar shape and just one shape
mode with tangent angle θðsÞ+ βiθiðsÞ, i= 1,2,3 are shown to the right ð−5≤ βi ≤5Þ. (B) Each tracked flagellar shape from one flagellum can be represented by
a single point in an abstract shape space that is spanned by the three principal shape modes. More specifically, the coordinates ðβ1,β2,β3Þ of this point are
obtained by approximating the tracked flagellar shape by a superposition of a previously computed mean flagellar shape and the three principal shape modes
(Eq. S2). The set of flagellar shapes from an entire experimental movie thus corresponds to a point cloud. This point cloud scatters around a closed curve (solid
line), which reflects the periodic nature of the flagellar beat. This closed curve has been obtained by a simple fit to the point cloud of flagellar shapes and can
be considered as a limit cycle of flagellar beating. Deviations from this limit cycle measure the variability of the flagellar beat. We can use this representation to
define a distinct flagellar phase angle φ (modulo 2π) for each tracked flagellar shape as indicated by the color code by mapping each flagellar shape onto the
limit cycle. A time series of flagellar shapes thus yields a time series of the flagellar phase angle φðtÞ. As an illustration of this assignment, superpositions of
flagellar shapes are shown to the right, each of which corresponds to flagellar shapes that were assigned the same flagellar phase modulo 2π. (C) Two-di-
mensional projections corresponding to the three-dimensional shape space representation in B.
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Fig. S3. Generalized hydrodynamic friction matrix Γij associated with the effective degrees of freedom x, y, α, φL, φR, and ψ . This generalized friction matrix
determines the generalized hydrodynamic friction forces Pi conjugate to the degrees of freedom q= ðx,y,α,φL,φR,ψÞ as Pi =Γij _qj , and is computed as a pro-
jection of the grand hydrodynamic friction matrix (Eq. S7). Each friction coefficient Γij is a periodic function of the two phase angles φL and φR, Γi,j =Γi,jðφL,φRÞ
and is represented as a color plot with axes as indicated. Here, α is set to zero; different values of α would correspond to a simple rotation of the matrix shown.
By Onsager symmetry, Γij =Γji . Several features are noteworthy. The coefficient ΓLR characterizes hydrodynamic interactions between the two flagella and is
found to be small compared to, for example, ΓLL. The other coefficients ΓLj =ΓjL, which set the friction force PL conjugate to φL, depend strongly on φL, but
almost not on φR. This is yet another manifestation of the fact that direct hydrodynamic interactions between the two flagella are comparably weak.
Analogous statements hold for the coefficients ΓRj . A counter-clockwise rotation of the cell, _α> 0, will increase the friction force PL during the effective stroke
of the left flagellum ðΓLα > 0Þ but decrease the corresponding respective friction force PR for the right flagellum during its effective stroke ðΓRα < 0Þ. Mirror
symmetry of the swimmer amounts to invariance of the friction matrix under the substitution ðx,y,α,φL,φRÞ→ ð−x,y,− α,φR,φLÞ, which implies a number of
symmetry relations, for example, ρ=Γαα must be symmetric in φL and φR. Finally, this rotational friction coefficient ρ=Γαα depends on the flagellar phases in
a more pronounced way than the translational friction coefficients Γxx and Γyy . This is in line with the general fact that rotational friction coefficients depend
more strongly (as ∼ l3) on the effective linear dimension l of an object than translational friction coefficients ð∼ lÞ. The coefficients Γjα and Γjψ associated with
yawing of the whole cell and pivoting of the flagellar apparatus, respectively, show a similar dependence on the flagellar phases.

2 pN

P0
(L)v0

(α)

1 μm/ms

Fig. S4. Coupling of cell-body yawing and flagellar beating. (Left) Translational velocities of the flagellar spheres used in our hydrodynamic computation
associated with a pure yawing motion of the cell body with rate _α. (Right) Hydrodynamic friction forces exerted by the flagellar spheres (as well as by the cell
body), if the left flagellum advances along its beat cycle with rate _φL. The generalized hydrodynamic friction coefficient ΓαL that couples cell-body yawing and
beating of the left flagellum can be computed as a scalar product between the velocity profile resulting from yawing and the force profile resulting from
flagellar beating and is found to be non-zero. Parameters: _φL =ω0, _α= 0:2ω0, and 2π=ω0 = 30 ms.
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Fig. S5. (A) Instantaneous swimming velocity in the direction perpendicular to the long cell axis as a function of the flagellar phase angles φL and φR. For
synchronized flagellar beating (dashed line), this velocity vanishes in our theory for symmetry reasons (green). If the two flagella are out of synchrony,
however, significant sideward motion of the cell is observed, both in theory and experiment. Note that wall effects present in the experiments, but not
considered in the computations, reduce translational velocities. (B) Instantaneous swimming velocity in the direction of the long cell axis, again as a function of
the flagellar phase angles.
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Fig. S6. The reduced equations of motion, Eqs. 2–4, were fitted to experimental time-series data for the yawing rate _α of the cell, as well as the flagellar phase
speeds _φL and _φR. This provided experimental estimates for the phase-dependent coupling functions μ, ν, and ρ. Specifically, we represented each coupling
function as a truncated Fourier series and determined the unknown Fourier coefficients by a linear regression using Eqs. 2–4. (A) Linear regression of Eq. 2.
Shown to the left in black is the instantaneous flagellar phase speed of the left flagellum _φL (smoothed with a span of 15 ms). Shown in red is a reconstructed
phase speed ωL − μLðφLÞ _α that depends on the instantaneous cell-body yawing rate _α, as well as the intrinsic flagellar frequency ωL and phase-dependent
coupling function μL for the left flagellum, which were obtained by the fit. The coefficient of determination was R2 = 30%. The estimate for μL obtained from
this fit is shown to the right (blue), together with a theoretical prediction (black) (see also Fig. 5A). (B) Linear regression of Eq. 4. Shown to the left is the
measured instantaneous yawing rate _α of the cell body (black) and a yawing rate reconstructed from the flagellar phase dynamics, ½−νðφLÞ _φL +
νðφRÞ _φR�=ρðφL,φRÞ (red). The coefficient of determination was R2 = 93%. From this fit, we obtain an experimental estimate for the coupling functions νðφÞ and
ρðφL,φRÞ (blue); theoretical predictions are shown in black.
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Fig. S7. Experimental fits for the coupling functions μ, ν, and ρ introduced in Eqs. 2–4 (blue curves, shaded regions indicate mean ± SE) and theoretical
predictions (black). The coupling functions μ, ν, and ρ relate flagellar beating and cell-body yawing. Fitting results are shown for six different cells illuminated
by either white or red light as indicated. For each cell, we employed n fits using n nonoverlapping time series of duration 0.4–0.5 s with n as indicated. The blue
curves represent the average of the fitted coupling functions for the n fits; the averaged coefficient of determination R2 is stated.
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Fig. S8. Theory of flagellar synchronization for an isolated flagellar pair. Inspired by experiments by Hyams and Borisy (1) reporting synchronization in
isolated flagellar pairs, we computed the swimming and synchronization behavior of a flagellar pair with cell body removed. For the computations, we used
flagellar shapes and flagellar driving forces QjðφÞ, j= L,R, determined from an intact cell (Fig. 1) (A) For a free-swimming flagellar pair, we observe a char-
acteristic yawing motion of the flagellar pair characterized by αðtÞ, if the two flagella are initially out of synchrony. The flagellar phase difference δ is found to
decrease with time (solid line), approximately following an exponential decay (dotted line). This implies that the in-phase synchronized state is stable with
respect to perturbations. Each completion of a full beat cycle of the left flagellum is marked by a dot. (B) To mimic experiments in which external forces
constrain the motion of the flagellar pair, we simulated the idealized case of a pair that cannot translate, while yawing of the pair is constricted by an elastic
restoring torque Qα = − kα that acts at the basal apparatus (red dot). As in the case of a free-swimming pair, the flagellar phase difference δ decays with time,
indicating stable synchronization. In the case of a constrained cell, the synchronization strength λ strongly depends on the clamping stiffness k. Parameters:
2π=ω0 = 30 ms, k= 104   pN  μm=rad. To enhance numerical stability, we added a small constant κ= 10  pN  μm ms to the flagellar friction coefficients, ΓjjðφL,φRÞ,
j= L,R, which corresponds to internal dissipation (2).

1. Hyams JS, Borisy GG (1975) Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Science 189(4206):891–893.
2. Friedrich BM, Jülicher F (2012) Flagellar synchronization independent of hydrodynamic interactions. Phys Rev Lett 109(13):138102.
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Fig. S9. Theory of flagellar synchronization by basal pivoting. (A) We consider the possibility of an elastically anchored flagellar basal apparatus (red), which
allows for pivoting of the basal apparatus (solid lines) by an angle ψ from its symmetric reference configuration (dashed lines). (B) For a free-swimming cell, the
equation of motion, Eq. S17, predicts both a yawing motion of the cell characterized by αðtÞ and a pivoting motion of the flagellar base characterized by ψðtÞ,
if the two flagella are initially out of synchrony. The flagellar phase difference δ is found to decrease with time (solid line), approximately following an ex-
ponential decay (dotted line). This implies that the in-phase synchronized state is stable with respect to perturbations. Each completion of a full beat cycle of
the left flagellum is marked by a dot. The synchronization behavior in the case of an elastically anchored flagellar basal apparatus is nearly identical to the case
of a stiff anchorage, as shown in the main text in Fig. 4. The lowest panel shows typical amplitudes of basal pivoting (δψ , solid line) and cell-body yawing (δα,
dashed line) as a function of basal stiffness k. Amplitudes were determined as half the range of variation during one beat cycle for an initial phase difference of
δð0Þ= π=2. (C) For a clamped cell that can neither translate nor rotate, the flagellar apparatus can still pivot and will do so if the two flagella are initially out of
phase. As in the case of a free-swimming cell, the flagellar phase difference δ decays with time, indicating stable synchronization. In the case of a clamped cell,
the synchronization strength λ strongly depends on the stiffness k of the elastic anchorage of the basal flagellar apparatus, which sets the amplitude of basal
pivoting. Parameters: 2π=ω0 = 30 ms, k= 104   pN  μm=rad.
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Fig. S10. Theoretical coupling functions for the case of a pivoting flagellar base. (A) A pivoting motion of the flagellar base changes the hydrodynamic
friction force associated with flagellar beating and thereby speeds up or slows down the flagellar beat cycle in our theory. This effect is quantified by
a coupling function μ (Eq. S18). (B) Hydrodynamic friction associated with pivoting of the flagellar base (and the attached flagella) is characterized by a friction
coefficient ρ (Eq. S20). This friction coefficient is maximal when the two flagella extend maximally from the cell body during their effective stroke. (C) The beat
of the left flagellum causes pivoting of the flagellar base. This effect is quantified by a coupling function ν (Eq. S20).
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