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We present results from four localities in Europe spanning
intervals before, during, and after Oceanic Anoxic Event 2 (OAE
2). The sample locations were selected with an eye toward sites
that had direct connection to the open ocean and a spatial dis-
tribution that encompasses multiple marine basins (Fig. 1). All
sample sites have been previously documented to record the OAE
2 interval by means of biostratigraphy, chemostratigraphy (Sr-and
C isotopes), or a combination of both (1–5). A comprehensive
discussion of the sedimentology, age relationships, and tectonic
settings of the sampled localities is already available (2, 5–7). All
of the sections are dominated by carbonate lithologies with
abundant microfossils, along with some macrofossils, and are
characterized by low organic carbon contents (2, 5–7), with one
exception. The section at South Ferriby contains a 10-cm-thick
organic-rich interval deposited during OAE 2 (2, 4), which was
avoided for carbonate-associated sulfate (CAS) analysis. We
chose these carbonate sites because they can capture evolving
global seawater chemistry, which tracks ocean-scale redox pro-
cesses. Importantly, because organic-lean sites typically provide
lithologic uniformity before, during, and after the OAE, they
potentially represent the best isotopic archives of global marine
conditions. Briefly, three of the four localities (Eastbourne cliff
section, South Ferriby Quarry, and the Trunch borehole: all
United Kingdom) illustrate poorly lithified pelagic foraminif-
eral–nannofossil-rich chalk facies with similar diagenetic histo-
ries and consistently good carbonate preservation. The fourth
sample site, Raia del Pedale, is a well-lithified platform-car-
bonate section in southern Italy, rich in rudist fragments and
benthic foraminifera and formerly located on the margin of the
Tethys Ocean (Fig. 1). Fig. 2 shows lithostratigraphic sections
and carbon isotopes for South Ferriby from Jenkyns et al. (4),
stratigraphy for Trunch borehole from Jarvis et al. (3) (note δ13C
from bulk pelagic carbonate), and stratigraphic data and carbon
isotopes for the Eastbourne section from Tsikos et al. (1).
All samples analyzed for the δ34SCAS were dominated by high

carbonate contents (60–80 wt%). We followed a standard pro-
cedure extracting CAS from the carbonate-rich samples (8, 9).
Briefly, the samples were trimmed to eliminate weathered sur-
faces, including surficial Fe oxidation. Then, 10–20 g of pow-
dered sample were treated with NaCl and NaOCl solutions
and rinsed with multiple deionized rinses to prevent the in-
corporation of any non-CAS sulfur-bearing phases. The samples
were then dissolved using 4 M HCl and vacuum-filtered less than
1 h later to minimize the pyrite oxidation, which was further
limited in the samples by low pyrite and ferric iron concen-
trations. A BaCl2 solution was added to precipitate sulfate as
BaSO4.
The precipitated and homogenized BaSO4 from each sample

was loaded into tin capsules with excess V2O5 and analyzed for
its 34S/32S ratio at the University of California, Riverside. Sulfur-
isotope ratios were measured using a Thermo Delta V gas-source
isotope-ratio mass spectrometer coupled to a Costech 4010 ele-
mental combustion system for on-line sample combustion and
analysis. All sulfur-isotope compositions are reported in standard
delta notation as per mil (‰) deviation relative to Vienna Can-
yon Diablo Troilite and were corrected to a suite of international
reference materials using a linear regression (e.g., refs. 8, 9) based
on replicate analyses of international standards [International
Atomic Energy Agency (IAEA) SO-5 [0.49], IAEA SO-6 [−34.05],
and NBS 127 [21.1]] agreed to within 0.2‰ of their pub-
lished values.

C and SModeling.The values used in the coupled carbon and sulfur
model were based on the combination of available geochemical
data and on the sensitivity tests (Fig. 4) to help constrain unknown
parameters for the sulfur cycle. As previously stated, there are
several possibilities to replicate the observed trends by mixing and
matching unconstrained parameters, but we have attempted to
bracket a few of these factors using data in combination with esti-
mates for these values in the modern cycles. For instance, theΔ34S
used in the model during non-OAE intervals is close to the
modern value and was necessary to achieve steady state with the
inputs, whereas the ΔS during the OAE itself was chosen based
on the known starting sulfate value (∼+20‰; ref. 10) and an
average pyrite value of −20‰ [the average pyrite value during
the OAE based on the available data is ∼−30‰ (11–14), but
this is exclusively from euxinic settings and we assume a global
average closer to −20‰], which provides a Δ34S of −40‰.
Consequently, the Δ34S is transiently shifted in the model from
−30‰ to −40‰ and back to −30‰ for the intervals prior to,
during, and after the OAE, respectively. The starting sulfate
concentration was based on the length of time it takes for the
S-isotope profile of the Raia del Pedale section to indicate re-
covery to the pre-OAE baseline and seems to fit best with values
between 5 and 9 mM and thus we used the average of 7 mM. The
values for continental weathering were held constant with the
exception of the enhanced weathering scenario (discussed pre-
viously), which would only dampen the positive excursion.
Therefore, the only parameter to further adjust is the amount of
pyrite burial, which can have dramatic effects on the magnitude
of the excursion.
To model the carbon isotope excursion in the modeling exer-

cises, all parameters are held constant in the carbon cycle and the
burial of organic carbon is increased to 1.6× the pre-excursion rate.
For the sulfur cycle portion of the model, we used the values
discussed above and increased the pyrite burial rate to 2× the
starting rate because it best replicated a 5–6‰ excursion; how-
ever, adjusting this value does not affect the offset between the
carbon- and sulfur-isotope excursions. Replicating this offset re-
quires a waning of the carbon and sulfur burial rates (shown in
Fig. S1). The longer the transient decay back to the pre-OAE
baseline burial rates, the larger the offset because of the differ-
ences of sizes of dissolved inorganic carbon (DIC) and sulfate
reservoirs and relative magnitude of the fluxes in the cycles
compared with this reservoir size. Consequently the peak car-
bon-isotope values occur closer to the time of maximum organic-
carbon burial (i.e., near the end of the OAE), but the sulfur
excursion continues to rise until the return to normal pyrite
burial as seen in Fig. S1.

Eastbourne Sulfur Geochemical Preservation. The δ34SCAS at this
site shows several negative shifts during the first half of the OAE,
although the overall trend of the data shows progressively more
positive values. Eastbourne shows small negative excursions within
the OAE, although the Raia del Pedale section seems to indicate
similar features. These negative excursions in the Eastbourne
section seem to be correlated with the most positive δ13Ccarb
values before the slight decreases in carbon-isotope values. It is
difficult to pinpoint the exact origin of the negative excursions at
Eastbourne but there are three possibilities to explain the ob-
served phenomena: (i) later pyrite oxidation skewing the primary
CAS signal, (ii) enhanced delivery of sulfate, or (iii) a paleo-
ceanographic circulation change.
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A concern for the validity of the data for CAS has been the
oxidation of pyrite either during the burial of the rock, outcrop
weathering, or during the chemical extraction of CAS (15, 16).
Due to the slight decrease in carbonate concentration leading
into the OAE (on average 83 wt% in OAE chalk sediment and
∼91 wt% in non-OAE chalk sediment) this could be a concern.
With this in mind, we measured the amount of pyrite in most
samples postfiltration of the CAS dissolution step and performed
a standard chromium chloride extraction (17). The low amounts
of pyrite measured for all sections (Fig. S2), with Eastbourne
having the highest values but relatively low compared with pre-
viously published CAS data sets (8, 9, 18–21), suggest this effect
played a limited role during the extraction procedure. In addi-
tion, cross-plots of sulfate isotopes and sulfate concentrations
against the pyrite concentration show no trends for individual
sections (Fig. S2) or all samples combined. Also, CAS isotope
vs. pyrite concentration for Eastbourne shows no linear corre-
lation or obvious trends. Linear correlations with pyrite would
imply a mixed signal of primary CAS and pyrite-contaminated
sulfate (9, 15, 16); therefore, we believe this signal is a primary
δ34SCAS signal.
Geochemical proxies suggest there was an increase of conti-

nental weathering during the OAE (22–24) or increased volcanic
activity (13), phenomena which could have delivered isotopically
depleted sulfur to the marine reservoir. This model seems un-

likely, because a simple mass-balance calculation would suggest
that a massive delivery of sulfate would have had to enter the
system to account for the isotopic shift. Furthermore, there is no
evidence for increased marine sulfate concentrations during the
OAE that would necessarily have affected all localities equally.
The third possibility for the δ34SCAS record that the negative

excursions observed at Eastbourne are changes in the paleo-
ceanographic circulation patterns due to climatic processes. There
is mounting evidence for a cooling episode during the early part
of the OAE, not only due to silicate weathering but also to the
global burial of organic carbon, thus decreasing atmospheric CO2
(25–28). The fall in temperature is documented by the paleo-
temperature proxy tetraether index (TEX)86 (29, 30) in the
Northern proto-Atlantic and by invasion of boreal faunas (the so-
called “Plenus Cold Event”) in the north European Chalk Sea
(31), both accompanied by excursions in Nd-isotope ratios, sug-
gesting introduction of watermasses of possible Arctic derivation
(32–34). In the proto-Atlantic region and the Western Interior
Seaway, the invasion of cooler, more oxygenated waters during the
same time interval was characterized by population of the seafloor
by benthic foraminifera: the so-called “Benthic Oxic Event” (35,
36). Such oxygenated waters as these would have oxidized sub-
seafloor surficial pyrite and introduced isotopically depleted sul-
fate into the water column and thus lowered the S-isotope
composition of ambient seawater.
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Fig. S1. Sensitivity test for the modeled offset of the coupled carbon and sulfur cycle by varying the amount of time it takes to return to pre-OAE values. This
model shows the sensitivity of a waning carbon burial with an increase in the offset of the carbon and sulfur cycles. An increase in time allows for a greater
offset and a larger magnitude sulfur-isotope excursion (A) whereas having very little effect on the sulfate concentration (B). The black lines represent all of the
carbon models and blue represents the sulfur models; the dashes for A and B are shown in the legend of A. The models use a twofold increase in pyrite burial,
ΔS of −40 during the OAE, and a starting marine concentration of 7 mM.
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Fig. S2. Cross-plots of geochemical data for Eastbourne (A and B) and all four sections analyzed in this study (C and D). In A and B, pyrite concentrations vs.
δ34SCAS (A) and carbonate contents (B) show no correlation, indicating that pyrite concentrations have not systematically affected the δ34SCAS values at
Eastbourne. Similarly, C and D show no correlation for pyrite concentration and δ34SCAS (C) or sulfate concentration (D).
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Table S1. Initial parameters for the C and S model

Flux (inputs and outputs)
Carbon

concentration δ13C, ‰
Sulfur

concentration δ34S, ‰

Starting marine reservoir 3.3 +1.8 1.35–5.4 +19
Weathering flux 25 −4 0.52* and 0.98† +5.5
Organic burial 5 −28 — —

Inorganic burial 20 — 0.67‡ and 0.83§ −11‡ and —
§

All fluxes are in 1018 mol/Ma, whereas the reservoir sizes are 1018 mol. The weathering flux for both cycles
combines both the fluxes from volcanic (*) and continental (†) weathering. The isotopic composition of the
weathering flux was calculated through isotopic mass balance. The inorganic flux for carbon is based on the
burial of carbonates, whereas the sulfur burial portion of the model includes pyrite (‡) and evaporite minerals
(§). Em-dashes indicate phases that do not impart a major fractionation on the isotope reservoirs (1), and the
δ34S value for pyrite gives a Δ34S of −30‰.

1. Kurtz AC, et al. (2003) Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18:(4)1090.
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