

**Figure S2** Initial quantitative trait variance components and responses to selection for the simulations plotted against the number of migrants per generation and subpopulation (*Nm*, in log<sub>10</sub>). The scenario refers to a subdivided population with *n* = 10 subpopulations, number of migrants per generation and subpopulation (*Nm*) either < 0.5 or > 0.5, mutation rate *u* = 0.00001 and strength of stabilising selection  $\omega^2$  = 25. Results are based on 2,000 simulations varying the subpopulation size (*N*) randomly between 100 and 1000, and the migration rate (*m*) between 0.0001 and 0.1. *V<sub>W</sub>*: Within-subpopulation genetic variance; *V<sub>B</sub>*: Between-subpopulation genetic variance; *V<sub>T</sub>*: Total genetic variance; *R*<sub>10</sub>: response to selection until generation 10; *R*<sub>10-100</sub>: response from generations 10 to 100; *R*<sub>T</sub>: total response until generation 100.

The figure shows that whereas the short-term response ( $R_{10}$ ) increases monotonically with Nm, the late response ( $R_{10-100}$ ) increases with Nm for  $\log(Nm) \approx -0.3$  ( $Nm < \sim 0.5$ ), and decreases thereafter. This indicates that, when subpopulations are considerably isolated from one another ( $Nm < \sim 0.5$ , corresponding to an expected  $F_{ST} > \sim 1/3$ ),  $V_W$  is very low and  $V_B$  rather high, and late and total response increase with Nm, due to the slow but continuous increase of  $V_w$  at the expense of  $V_B$ . For higher levels of migration ( $Nm > \sim 0.5$ ; corresponding to  $F_{ST} < \sim 1/3$ ),  $V_W$  increases substantially with migration, implying an increase in the short-term response, but  $V_B$  and  $V_T$  decline consistently, implying a decline in late response.