		Nm < 0.5				<i>Nm</i> > 0.5		
		<i>R</i> ₁₀	R ₁₀₋₁₀₀	R _T	<i>R</i> ₁₀	R ₁₀₋₁₀₀	R _T	
	V_W	0.786	0.269	0.450	0.839	-0.515	0.084	
QT	V _B	-0.011	0.270	0.228	-0.715	0.543	0.052	
	VT	0.050	0.293	0.264	-0.455	0.468	0.178	
	Q _{ST}	-0.774	-0.251	-0.431	-0.833	0.536	-0.055	
QTL	Hs*	0.738	0.487	0.623	0.726	-0.387	0.143	
	D_{G}^{*}	-0.678	-0.417	-0.547	-0.930	0.581	-0.082	
	H_{T}^{*}	-0.458	-0.268	-0.357	0.009	0.082	0.105	
	G_{ST}^*	-0.830	-0.500	-0.659	-0.904	0.544	-0.104	
	A_{s}^{*}	0.690	0.634	0.734	0.414	0.033	0.382	
	D_A^*	-0.433	0.079	-0.054	-0.519	0.615	0.299	
	A_{T}^{*}	0.443	0.598	0.635	0.249	0.175	0.414	
	<i>K</i> _{<i>T</i>} *	-0.385	0.009	-0.100	-0.097	0.428	0.427	
	A_{ST}^{*}	-0.805	-0.672	-0.800	-0.749	0.613	0.107	
	<i>D</i> *	-0.621	-0.369	-0.490	-0.889	0.561	-0.072	
Markers	Hs	0.660	0.690	0.774	0.248	0.165	0.401	
	D_G	-0.779	-0.550	-0.689	-0.882	0.562	-0.065	
	Hτ	-0.483	-0.116	-0.234	-0.225	0.454	0.353	
	G _{ST}	-0.782	-0.650	-0.774	-0.875	0.473	-0.165	
	As	0.531	0.694	0.742	0.385	0.090	0.426	
	D _A	-0.091	0.425	0.337	-0.368	0.561	0.360	
	A _T	0.344	0.646	0.648	0.248	0.198	0.441	
	Kτ	-0.137	0.373	0.280	-0.150	0.458	0.419	
	A _{ST}	-0.748	-0.710	-0.816	-0.895	0.601	-0.029	
	D	-0.774	-0.521	-0.662	-0.881	0.568	-0.057	

Table S1Ordinary correlation coefficients between initial population genetic diversity variables and response toselection for a structured population

The scenario refers to a subdivided population with n = 10 subpopulations, Nm migrants per generation and subpopulation, mutation rate u = 0.00001 and strength of stabilising selection given by $\omega^2 = 25$. The variables included in the model are for quantitative trait (QT) and QTLs: V_W , V_B , V_T , Q_{ST} , H_5^* , D_6^* , H_7^* , G_{ST}^* , A_5^* , D_A^* , A_7^* , A_{ST}^* , D^* and K_7^* ; and for neutral markers: H_5 , D_6 , H_7 , G_{ST} , A_5 , D_A , A_7 , A_{ST} , D and K_7 (see main text for definitions). R_{10} : response to selection until generation 10; R_{10-100} : response from generations 10 to 100; R_7 : total response until generation 100. Average values (and its standard deviation) of K_7^* across runs was 3.6 (0.9) and that of K_7 was 3.0 (0.8). The results are based on 5 sets of 2000 simulation runs varying the subpopulation size (N) randomly between 100 and 1000, and the migration rate (m) between 0.0001 and 0.1.