

Figure S1 Example of simulated selection responses (change in the phenotypic mean for the selected quantitative trait) occurred after a change in the selection optimum in the population. The scenario refers to a subdivided population with n = 10 subpopulations, with a subpopulation census size randomly taken between 100 and 1000 and a migration rate among subpopulations randomly taken between 0.0001 and 0.1.

Figure S2 Initial quantitative trait variance components and responses to selection for the simulations plotted against the number of migrants per generation and subpopulation (*Nm*, in log₁₀). The scenario refers to a subdivided population with *n* = 10 subpopulations, number of migrants per generation and subpopulation (*Nm*) either < 0.5 or > 0.5, mutation rate *u* = 0.00001 and strength of stabilising selection ω^2 = 25. Results are based on 2,000 simulations varying the subpopulation size (*N*) randomly between 100 and 1000, and the migration rate (*m*) between 0.0001 and 0.1. *V_W*: Within-subpopulation genetic variance; *V_B*: Between-subpopulation genetic variance; *V_T*: Total genetic variance; *R*₁₀: response to selection until generation 10; *R*₁₀₋₁₀₀: response from generations 10 to 100; *R*_T: total response until generation 100.

The figure shows that whereas the short-term response (R_{10}) increases monotonically with Nm, the late response (R_{10-100}) increases with Nm for $\log(Nm) \approx -0.3$ ($Nm < \sim 0.5$), and decreases thereafter. This indicates that, when subpopulations are considerably isolated from one another ($Nm < \sim 0.5$, corresponding to an expected $F_{ST} > \sim 1/3$), V_W is very low and V_B rather high, and late and total response increase with Nm, due to the slow but continuous increase of V_w at the expense of V_B . For higher levels of migration ($Nm > \sim 0.5$; corresponding to $F_{ST} < \sim 1/3$), V_W increases substantially with migration, implying an increase in the short-term response, but V_B and V_T decline consistently, implying a decline in late response.

		Nm < 0.5				Nm > 0.5			
		<i>R</i> ₁₀	R ₁₀₋₁₀₀	R _T	<i>R</i> ₁₀	R ₁₀₋₁₀₀	R _T		
	V_W	0.786	0.269	0.450	0.839	-0.515	0.084		
QT	VB	-0.011	0.270	0.228	-0.715	0.543	0.052		
	VT	0.050	0.293	0.264	-0.455	0.468	0.178		
	Q _{ST}	-0.774	-0.251	-0.431	-0.833	0.536	-0.055		
QTL	Hs*	0.738	0.487	0.623	0.726	-0.387	0.143		
	D_{G}^{*}	-0.678	-0.417	-0.547	-0.930	0.581	-0.082		
	H_{T}^{*}	-0.458	-0.268	-0.357	0.009	0.082	0.105		
	G _{ST} *	-0.830	-0.500	-0.659	-0.904	0.544	-0.104		
	A_{s}^{*}	0.690	0.634	0.734	0.414	0.033	0.382		
	D_A^*	-0.433	0.079	-0.054	-0.519	0.615	0.299		
	A_{T}^{*}	0.443	0.598	0.635	0.249	0.175	0.414		
	K_T^*	-0.385	0.009	-0.100	-0.097	0.428	0.427		
	A_{ST}^{*}	-0.805	-0.672	-0.800	-0.749	0.613	0.107		
	D^*	-0.621	-0.369	-0.490	-0.889	0.561	-0.072		
Markers	Hs	0.660	0.690	0.774	0.248	0.165	0.401		
	D_G	-0.779	-0.550	-0.689	-0.882	0.562	-0.065		
	Η _T	-0.483	-0.116	-0.234	-0.225	0.454	0.353		
	G _{ST}	-0.782	-0.650	-0.774	-0.875	0.473	-0.165		
	As	0.531	0.694	0.742	0.385	0.090	0.426		
	D _A	-0.091	0.425	0.337	-0.368	0.561	0.360		
	A _T	0.344	0.646	0.648	0.248	0.198	0.441		
	Kτ	-0.137	0.373	0.280	-0.150	0.458	0.419		
	A _{ST}	-0.748	-0.710	-0.816	-0.895	0.601	-0.029		
	D	-0.774	-0.521	-0.662	-0.881	0.568	-0.057		

Table S1Ordinary correlation coefficients between initial population genetic diversity variables and response toselection for a structured population

The scenario refers to a subdivided population with n = 10 subpopulations, Nm migrants per generation and subpopulation, mutation rate u = 0.00001 and strength of stabilising selection given by $\omega^2 = 25$. The variables included in the model are for quantitative trait (QT) and QTLs: V_W , V_B , V_T , Q_{ST} , H_5^* , D_6^* , H_7^* , G_{ST}^* , A_5^* , D_A^* , A_7^* , A_{ST}^* , D^* and K_7^* ; and for neutral markers: H_5 , D_6 , H_7 , G_{ST} , A_5 , D_A , A_7 , A_{ST} , D and K_7 (see main text for definitions). R_{10} : response to selection until generation 10; R_{10-100} : response from generations 10 to 100; R_7 : total response until generation 100. Average values (and its standard deviation) of K_7^* across runs was 3.6 (0.9) and that of K_7 was 3.0 (0.8). The results are based on 5 sets of 2000 simulation runs varying the subpopulation size (N) randomly between 100 and 1000, and the migration rate (m) between 0.0001 and 0.1.

<i>u</i> = 0.00001								
Nm	As	$E[A_S]$	D _A	$E[D_A]$	A _{ST}	E[A _{ST}]	Kτ	E[<i>K_T</i>]
0	0.299	0.301	1.152	1.146	0.794	0.792	12.36	68.198
0.01	0.512	0.547	1.203	1.174	0.701	0.682	10.50	37.366
0.05	0.923	1.059	1.028	0.969	0.527	0.478	7.31	16.269
0.1	1.444	1.277	0.935	0.749	0.393	0.370	6.57	11.208
0.5	1.652	1.483	0.533	0.385	0.244	0.206	5.45	6.223
1	1.628	1.574	0.436	0.330	0.211	0.173	4.94	5.515
5	1.961	1.909	0.365	0.280	0.157	0.128	4.75	4.928
10	2.218	2.080	0.337	0.269	0.132	0.115	4.76	4.853
50	2.431	2.464	0.265	0.248	0.098	0.092	4.64	4.792
100	2.592	2.598	0.283	0.236	0.098	0.083	4.72	4.785
500	3.009	2.782	0.233	0.180	0.072	0.061	4.87	4.779
1000	3.110	2.802	0.217	0.136	0.065	0.046	4.91	4.778
<i>u</i> = 0.0	0002							
0	5.605	4.887	5.945	4.382	0.515	0.473	66.05	112.854
0.01	5.784	5.058	6.049	4.435	0.511	0.467	65.16	110.190
0.05	6.370	5.782	6.402	4.683	0.501	0.448	64.84	101.763
0.1	7.323	6.552	6.854	4.872	0.483	0.427	63.67	94.500
0.5	11.942	10.520	7.653	5.352	0.391	0.337	61.33	74.240
1	15.569	13.205	7.768	5.389	0.333	0.290	61.87	68.030
5	23.456	20.803	7.196	5.249	0.235	0.202	61.55	61.392
10	26.924	24.416	6.750	5.222	0.200	0.176	60.98	60.419
50	33.847	32.129	5.857	4.880	0.147	0.132	60.08	59.614
100	36.821	34.941	5.323	4.777	0.126	0.120	58.88	59.511
500	40.904	38.592	4.822	3.610	0.105	0.086	58.87	59.429
1000	43.009	38.968	4.649	2.707	0.098	0.065	59.92	59.419

 Table S2 Comparison between computer simulations and diffusion approximations (E[] in bold face) for different gene frequency and allelic diversity variables.

The scenario considered refers to a subdivided population with n = 10 subpopulations, each of size N = 1000 individuals, mutation rate u, variable migration rate (m), and no sampling (all subpopulation individuals are analysed). See main text for definitions.

<i>u</i> = 0.00001									
Nm	g	As	E[As]	D _A	E[<i>D</i> _A]	A _{ST}	Е[А <i>sт</i>]	Kτ	E[<i>K</i> ₇]
0	100	0.188	0.207	1.052	1.072	0.848	0.838	11.250	44.151
	50	0.182	0.170	1.047	1.041	0.852	0.860	11.224	37.873
	20	0.144	0.129	1.012	1.007	0.876	0.887	10.838	29.597
	10	0.119	0.103	0.990	0.986	0.893	0.906	10.596	23.505
1	100	1.293	1.290	0.368	0.337	0.221	0.207	3.950	4.282
	50	1.192	1.168	0.367	0.345	0.236	0.228	3.806	4.012
	20	0.980	0.982	0.350	0.346	0.264	0.260	3.460	3.568
	10	0.792	0.806	0.339	0.347	0.301	0.301	3.196	3.231
1000	100	1.968	1.839	0.250	0.277	0.113	0.131	3.870	3.751
	50	1.565	1.569	0.248	0.277	0.137	0.150	3.474	3.487
	20	1.189	1.202	0.249	0.277	0.173	0.187	3.084	3.124
	10	0.898	0.923	0.248	0.278	0.217	0.231	2.818	2.848
<i>u</i> = 0.0002									
0	100	3.439	3.274	3.995	3.431	0.537	0.512	44.390	69.487
	50	2.900	2.738	3.510	3.060	0.548	0.528	39.004	58.257
	20	2.174	2.085	2.857	2.609	0.568	0.556	31.742	43.646
	10	1.629	1.639	2.366	2.295	0.592	0.583	26.290	33.168
1	100	9.441	9.106	5.608	4.803	0.373	0.345	41.140	44.052
	50	7.877	7.366	4.894	4.392	0.383	0.374	35.330	38.171
	20	5.580	5.392	3.955	3.818	0.415	0.415	28.250	29.810
	10	3.865	3.786	3.173	3.180	0.451	0.457	22.940	23.658
1000	100	20.181	20.206	4.847	5.236	0.194	0.206	39.390	28.938
	50	15.401	15.320	4.529	5.044	0.227	0.248	33.694	33.583
	20	9.451	9.350	3.957	4.358	0.295	0.318	26.608	26.507
	10	5.802	5.758	3.283	3.600	0.361	0.385	21.428	21.271

 Table S3
 Comparison between computer simulations and diffusion approximations (E[] in bold face) for different allelic diversity variables.

The scenario considered refers to a subdivided population with n = 10 subpopulations, each of size N = 1000 individuals, mutation rate u, variable migration rate (m), and g sampled genes per subpopulation. See main text for definitions.