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This file contains, besides an explanation of analyzing stochastic simulation output, additional information
about the different models that were used as examples to demonstrate the capabilities of StochPy. For
convenience in each model the cell volume was set to 1 (cell volume of E. coli is about 1 fl). Within
StochPy simulations were done with 2.0 · 106 time steps unless stated otherwise.

1 Analyzing stochastic simulation output

The stochastic simulation output is not discretized and, as a consequence, StochPy cannot calculate the
mean of a particular species by taking the average over the vector of species quantities. First, the species
state probability, the probability of species X in a given state n, has to be calculated by determining the
fraction of time spent in this particular state,

P (X = n) =

M∑
j=1

(Tj |X = n)

Tsim
(1)

Here, Tj is a time period that species X spent in state n, and Tsim is the total simulation time. For
the species X1 shown in Figure 1 of the manuscript, as first sight, one might think that P (X1 = 0) <<
P (X1 = 1) because X1 = 1 during 19 of the 20 simulated time steps. In stochastic simulations, reaction
events are irregular due to their stochastic nature. In this particular example, the first reaction event
took 39.976 time units, while the next 19 reaction events together took only 1.002 time units. Therefore,
the probabilities of being in state zero and one are P (X1 = 0) = 39.976/40.978 ≈ 0.975 and P (X1 =
1) = 1.002/40.978 ≈ 0.025 and therefore P (X1 = 0) >> P (X1 = 1).

Subsequently, StochPy can determine the mean of this species by taking the sum of the product of
species state probabilities and species state values,

〈X〉 =

N∑
i=1

P (X = ni) · ni (2)

Since we already calculated the species state probabilities of species X1, we can simply determine its
mean for the done simulation, 〈X1〉 = P (X1 = 0) · 0 +P (X1 = 1) · 1 ≈ 0.025. Both Equations (1) and (2)
can also be exploited for calculating propensity probabilities and means. Then, aRi is the propensity
of reaction Ri and P (aRi = n) is the propensity probability of reaction Ri for state n. For instance,
P (aR1

= 0) = 39.976/40.978 ≈ 0.975 and P (aR1
= 0.05) ≈ 0.025 and therefore 〈aR1

〉 = P (aR1
=

0) · 0 + P (aR1
= 0.05) · 0.05 ≈ 1.25 · 10−3.

Returning explicit output allows StochPy, besides e.g. discrete plotting, to provide the unique feature
of the calculation and analysis of event waiting times. The event waiting times for a particular reaction
is a vector of inter-event times of that particular reaction. For a given reaction Ri these waiting times
can be calculated by determining all its inter-event times,

w(Ri) = ∀ j : (tj+1|Ri)− (tj |Ri) (3)

Here, w(Ri) are the event waiting times of reaction Ri and tj is an event time.
Moreover, StochPy provides the unique feature of auto-covariance and auto-correlation analysis of

species and propensities.
Covariance is a measure of two random variables of their joint variability. Therefore, auto-covariance

is the covariance of a variable against a time-shifted version of itself. We can subsequently determine the



2

auto-correlation by dividing the auto-covariance by the variance of the signal. For this reason, (auto-
)correlation is a dimensionless property which makes it often a more useful measure of correlation than
(auto-)covariance. In StochPy, before calculating both auto-covariances and auto-correlations the explicit
output (of which an example is shown in Figure 1 of the manuscript) is transferred to a regular grid.
Without a regular grid, the number of different lags could be to 0.5N · (N − 1) where N is the number
of time points.

Next, both the auto-covariance and the auto-correlation can be calculated by determining the signal
difference for a given time lag τ . We illustrate this for species Xi, but the same method can be used for
propensity aRi . First, we determine the auto-covariance of species Xi for a given time lag τ ,

ACOV (τ) =
1

N
·
N−τ∑
t=1

(Xi(t)− 〈Xi〉)(Xi(t+ τ)− 〈Xi〉) (4)

where Xi(t) is the species state at time t. Accordingly, the auto-correlation of Xi for a given time lag τ
can be determined by dividing ACOV (τ) with the signal variance,

ACOR(τ) =
ACOV (τ)

1
N ·

N∑
t=1

(Xi(t)− 〈Xi〉)2
(5)

2 Example 1: Modeling single-cell transcription

mRNA
ksyn kdeg

Figure 1. Immigration-death model. ksyn and kdeg denote the mRNA synthesis and degradation rate
constant, respectively.

The network shown in Figure 1 consists of two reactions: The synthesis and degradation of mRNA
occurs with a zero-order reaction equal to ksyn and with a first-order reaction equal to ksyn· mRNA,
respectively. The mRNA synthesis rate, ksyn, was 10 min−1 during our simulations. The mRNA degra-
dation rate varied during our simulations between 0.01− 0.5 min−1.

In steady state the synthesis rate equals the degradation rate, ksyn−kdeg ·〈mRNA〉 = 0, and therefore,

〈mRNA〉 =
ksyn
kdeg

(6)

Hence, the mean mRNA copy number per cell depends only on the used parameters values. For ksyn = 10
min−1 and kdeg = 0.2 min−1 the analytical 〈mRNA〉 is 50. Using StochPy’s direct solver, we determined
both the mean and the variance of mRNA copy numbers per cell at about 50.

This immigration-death model is one of the simplest examples of a Poisson process. A Poisson process
is a stochastic process where events occur continuously and independently of one another. Therefore, the
mean mRNA copy number is identical to its variance. For a Poisson distribution the probability mass
function of mRNA is given by,

f(n, λ) = P (mRNA = n) =
λn · e−λ

n!
(7)

where λ is the mean mRNA copy number and its variance and n is the mRNA copy number. This
probability distribution is shown in the manuscript in Figure 1C.
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The story is a bit different for propensities. The propensity aR1
is constant, while the propensity of

aR2 depends on parameter k2 and the mRNA copy number. We already determined that the mRNA
copy number is Poisson distributed. By multiplying the mean and variance with a constant (k) and the
squared of this constant, we can calulate the mean and variance of aR2

,

E(ax) = k · E(x)

V ar(ax) = k2 · V ar(x)
(8)

Hence, the mean and variance of aR2
are 10 and 2, respectively. The simulation results of StochPy were

in agreement with these analytical results. Within StochPy, we can also determine the probability of a
certain propensity, which is analytically given by,

P (aR2
= y) = P (mRNA · kdeg = y) = P (mRNA =

y

kdeg
) (9)

Furthermore, we used the “change of variable” method to determine the analytical solution of the prob-
ability mass function of aR2

,

f(y, λ) = P (aR2
= y) =

λy/kdeg · e−λ

(y/kdeg)!
∀ y

kdeg
∈ n (10)

and otherwise 0. This is, in fact, a Poisson distribution whose x-axis is distorted.
For this model the auto-correlation function is also analytically known [1],

ACOR(τ) = e−kdeg·τ (11)

Thus, the auto-correlation of mRNA copy numbers does not depend on its synthesis rate. For different
kdeg values the StochPy simulations done until t = 20.000 were in agreement with the analytical solution
given in Equation (11), which is shown in Figure 3E of the manuscript.

3 Example 2: Modeling bursty single-cell transcription

OFF ON

mRNA

kon

ko f f ksyn kdeg

Figure 2. Network that describes single-cell transcription in a stochastic manner. kon, koff , ksyn, and
kdeg denote the ON switching, OFF switching, synthesis, and degradation rate constant, respectively.

Figure 2 illustrates a network that consists of a switching gene and mRNA turnover. Product mRNA
is synthesized only in the ON state. This network is composed out of the following reactions,

OFF
kon · OFF−−−−−−→ ON

ON
koff · ON
−−−−−−→ OFF

ksyn · ON−−−−−−→ mRNA
kdeg ·mRNA
−−−−−−−−→

(12)
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The mRNA synthesis and degradation rate constants were 80 min−1 and 2.5 min−1 in our simulations,
respectively. Switching from ON to OFF state and vice versa occurred at a rate of 0.05 min−1 during
bursty transcription and at a rate of 5.0 min−1 during non-bursty transcription, respectively. There-
fore, lifetimes of the ON and OFF state (1/koff and 1/kon) were hundred times larger during bursty
transcription than during non-bursty transcription.

The mean mRNA copy number per cell and the fraction of time spent in the ON and OFF state are
as follows,

〈mRNA〉 =
ksyn
kdeg

· kon
kon + koff

〈ON〉 =
kon

kon + koff

〈OFF 〉 =
koff

kon + koff

(13)

Because both switching probabilities are equal, the fraction of time spent in both states should be
equal. Therefore, the mean mRNA copy number per cell during bursty and non-bursty transcription is
equal. Based on our parameters the mean mRNA copy number per cell should be equal to 16. The stan-
dard deviation of the mRNA copy number, however, differs between bursty and non-bursty transcription,
which can be calculated as follows,

σX =

√
〈X2〉 − 〈X〉2 (14)

StochPy simulations gave that 〈mRNA〉 was about 16.0 copy numbers per cell for bursty and non-
bursty transcription, respectively. The fraction of time spent in the ON and OFF state — 〈OFF 〉 and
〈ON〉 — for both bursty and non-bursty transcription was about 0.50. For a single StochPy simulation
of 106 steps, standard deviations were σmRNA ≈ 16.20 and σoff = σon ≈ 0.50 for bursty transcription
and σmRNA ≈ 8.21 and σoff = σon ≈ 0.50 for non-bursty transcription.

With StochPy we also determined the probability distribution of mRNA copy numbers. The exact
probability of having m mRNA copy numbers [3] at steady state is given by,

Pm(m) =
mm
s e
−ms

m!

Γ(ζ0 +m)Γ(ζ0 + ζ1)

Γ(ζ0 + ζ1 +m) + Γ(ζ0)
1F1(ζ1, ζ0 + ζ1 +m;ms) (15)

where Γ denotes the gamma function, ms = ksyn/kdeg, ζ0 = kon/koff , ζ1 = koff/kdeg, and 1F1(a, b; z)
is the Kummer confluent hyper-geometric function of the first kind. The behavior of the exact mRNA
distribution can be bimodal and unimodal as is illustrated in the manuscript in Figure 4A.

For this model the waiting time probability density function [2] is given by,

f(t) = P [X ∈ (t, t+ dt)]/dt = w1r1e
−r1t + w2r2

r1,2 = (K ±
√
K2 − 4ksynkon), r1 > r2

(16)

where w1 = 1−w2 = (ksyn− r2)/(r1− r2) ∈ (0, 1) and K = koff +kon+ksyn. In addition, the analytical
mean waiting times were compared with those obtained from the stochastic simulation,

〈tmRNA〉 =

∫ ∞
0

tf(t)dt =
w1

r1
+
w2

r2
= τsyn

(
τon

τon + τoff

)−1
(17)

The waiting times of mRNA for bursty and non-bursty transcription derived with StochPy are equal
to the analytical waiting times of mRNA in both transcription modes (〈tmRNA〉 = 0.25). Finally, the
noise in the mRNA copy number is equal to,

σ2
mRNA

〈mRNA〉2
=

1

〈mRNA〉
+

τo
τo + τmRNA

· σ2
ON

〈ON〉2
(18)
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where τo = 1/(koff +kon), τmRNA = 1/(kdeg), and σ2
ON/〈ON〉2 = koff/kon. The analytical mRNA noise

in bursty and non-bursty transcription is 1.02 and 0.26, respectively. A single StochPy simulation of 106

steps gave 1.03 and 0.26 for bursty and non-bursty transcription, respectively.

4 Example 3: Modeling single-molecule Michaelis-Menten ki-
netics

E + S ES E + P
k+1

k−1

k+2

Figure 3. The classic enzyme kinetic scheme. k+1 ,k−1 , and k+2 denote rate constants.

Michaelis-Menten kinetics have been used already for one-hundred years for modeling enzyme kinetics
for a large ensemble of enzyme molecules. The simplest enzyme mechanism considers an enzyme, E, which
converts a single substrate S into a single product P by first forming an enzyme-substrate complex ES.
An illustration of this system is shown in Figure 3. Recent advances in single-molecule measurements allow
the study of enzymatic reactions at the level of single enzymes. Modeling of single-molecule enzymology
requires stochastic simulations. By performing single-molecule experiments the probability density, fT (t),
of event waiting times T for product P arrivals can be determined [4, 5].

Here, we stochastically modeled single-molecule enzyme kinetics to demonstrate the capabilities of
StochPy. Single-molecule enzyme kinetics means that, at all times, the total enzyme copy number is 1,

E[t] + ES[t] = 1 (19)

Because the substrate depletion with one enzyme copy number is negligible, the substrate S copy number
can be considered constant,

S[t] = S = c (20)

Subsequently, we can write the rate equations of this system in terms of time dependent probabilities [4],

ṖE(t) = −k+1 · PE(t) + k−1 · PES(t)

ṖES(t) = k+1 · PE(t)− (k−1 + k+2 ) · PES(t)

ṖP (t) = k+2 · PES(t)

(21)

The probability for a single enzyme to be in the unbounded state is the fraction of time spent the
unbounded state. Similarly, the probability for a single enzyme to be in the bounded state is the fraction
of time spent in the bounded state. We can write these probabilities in terms of rate constants and
substrate copy numbers,

PE =
τE

τE + τES
=

k−1 + k+2
k−1 + k+2 + k+1 · S

PES =
τES

τE + τES
=

k+1 · S
k−1 + k+2 + k+1 · S

(22)

These probabilities equal the analytical 〈E〉 and 〈ES〉 copy numbers in steady state. StochPy simulations
gave that 〈E〉 ≈ 0.555 and 〈ES〉 ≈ 0.445 which is in agreement with analytical values for the parameter
values used (S · k+1 = 2/3, k−1 = 1/12, and k+2 = 3/4).
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Next, the steady-state flux of this system is given by,

Vss = k+1 · S · PE − k
−
1 · PES = k+2 · PES (23)

From this relationship we can derive the famous Michaelis-Menten relationship,

Vss = k+2 · PES =
k+2 · k

+
1 · S

k+1 · S + k−1 + k+2

=
k+2 · S

S +
k−1 +k+2
k+1

=
Vmax · S
S +Km

(24)

Here, Vmax = k+2 and Km =
k−1 +k+2
k+1

. Then, for large ensembles the product P copy number at time t

depends on,
P (t) = Vss · t (25)

For single-molecule enzymology experiments the product P copy number fluctuates around this analytical
solution for large ensembles. In Figure 6C of the manuscript three Monte Carlo trajectories that describe
the time evolution of this model are shown to illustrate these fluctuations for small ensembles.

Next, the probability density of event waiting times for product P arrivals is given by,

fT (t) = k+2 · PES(t) (26)

The rate equations given in Equation (21) represent a system of linear first-order differential equations
which can be solved analytically for PE(t), PES(t), and PP (t). Therefore, using Mathematica [6] we can
analytically determine fT (t),

fT (t) = k+2 ·
e−0.5(k

+
1 ·S+k

−
1 +k+2 +

√
A)·t · (−1 + e

√
A·t) · k+1 · S√

A
(27)

where A depends on the rate constants and the substrate copy number S,

A = −4 · k+1 + k+2 · S + (k+1 · S + k−1 + k+2 ) (28)

Rearrangement will show that this analytical result is identical to those obtained by Kou et al. [4]. For
single-molecule enzymology fT (t) peaks as is shown in the manuscript in Figure 6D.

It can be shown that the first raw moment of fT (t)—the mean waiting time 〈T 〉 of product P arrivals—
is the inverse of the classic Michaelis-Menten equation derived in Equation (24),

〈T 〉 =
k−1 + k+2
k+1 · k

+
2 · S

+
1

k+2
=
k+1 · S + k−1 + k+2

k+2 · k
+
1 · S

=
1

Vss
(29)

Theoretically, 〈T 〉 = 3.0 and Vss = 1/3 given the set of used parameters. StochPy simulations gave
that 〈T 〉 was about 3.0.

5 Example 4: Modeling regulated gene expression dynamics

Figure 4 illustrates the network that was used in this paper to demonstrate the flexibility of StochPy.
This network consists, besides mRNA and protein, of active and inactive transcription factors. These
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TF

TF*

mRNA

Protein

rT F,syn rT F,deg

rT F∗,deg

rT F,arT F,i

rmRNA,deg

rmRNA,syn

rProt,deg

rProt,syn

Figure 4. Network that describes regulated gene expression dynamics in a stochastic manner. rX,syn,
and rX,deg denote the synthesis and degradation rate constant for X (mRNA, TF, and protein),
respectively.

transcription factors switch between an inactive and an active state where the active state stimulates
mRNA synthesis. Protein synthesis can occur if mRNA is present in the cell.

This network is composed out of the following reactions,

ktf,syn−−−−→ TF
ktf,deg · TF
−−−−−−−→

TF
ktf,a · TF
−−−−−−→ TF∗

ktf,deg · TF∗
−−−−−−−−→

TF∗
ktf,i · TF∗
−−−−−−→ TF

δ−→ mRNA
km,deg ·mRNA
−−−−−−−−−→

kp,syn ·mRNA−−−−−−−−−→ Protein
kp,deg · Protein
−−−−−−−−−→

(30)

where δ is (km,syn ·TF∗)/(TF ∗+kX) with kX = 2. The transcription factor synthesis and degradation
rates were 0.61 min−1 and 0.05 min−1. Switching from active to an inactive transcription factor and vice
versa occurred at a rate of 5 min−1 and 0.5 min−1, respectively. The mRNA synthesis and degradation
rates were 1.36 min−1 and 0.10 min−1, while the protein synthesis and degradation rates were 1.13 min−1

and 0.011 min−1 in our simulations.
Each living cell grows, doubles its content, and subsequently divides which has an effect on gene

expression dynamics. Cell division can be modeled explicitly and implicitly. Explicit modeling of cell
division means that the cell content is binomially distributed between two daughter cells after a certain
generation time Tg. This generation time is gamma distributed, but on average the cellular content is
doubled after Tg. Note that population averages also depend on the age distribution in the population.
We assume a constant age distribution (a synchronous population). This allows us to track only one
daughter cell after each cell division rather than tracking the complete phylogenetic tree.

Alternatively, in implicit modeling the effect of protein dilution due to growth and division is described



8

by including the growth rate (µ) into the degradation rates of transcription factors, mRNA, and protein,

ktf,syn−−−−→ TF
(ktf,deg + µ) · TF
−−−−−−−−−−→

TF
ktf,a · TF
−−−−−−→ TF∗

(ktf,deg + µ) · TF∗
−−−−−−−−−−−→

TF∗
ktf,i · TF∗
−−−−−−→ TF

δ−→ mRNA
(km,deg + µ) ·mRNA
−−−−−−−−−−−−→

kp,syn ·mRNA−−−−−−−−−→ Protein
(kp,deg + µ) · protein
−−−−−−−−−−−−→

(31)

We can determine the growth rate corresponding to a doubling time of 60 minutes voa the following
relationship,

T =
ln(2)

µ
= 60 min (32)

Within StochPy, stochastic simulations were done for 5000 generations, about 10 × 106 time steps,
to be able to accurately determine the mean copy numbers of transcription factors, mRNA, and protein
(Table 1). Previous research showed that the average copy numbers with a constant age distribution were
about 4% larger than with an exponential age distribution [7]. The results obtained with StochPy are
in agreement with this finding. In addition, modeling cell division explicitly resulted in larger standard
deviations for especially protein copy numbers.

Table 1. Analysis of explicit and implicit modeling of cell division

TF TF*
µ σ µ σ

Explicit modeling 1.04 ± 0.00 1.03 ± 0.00 9.26 ± 0.03 3.39 ± 0.01
Implicit modeling 1.01 ± 0.00 1.01 ± 0.00 9.01 ± 0.03 3.02 ± 0.01

mRNA Protein
µ σ µ σ

Explicit modeling 9.99 ± 0.02 3.53 ± 0.01 508.13 ± 1.62 132.96 ± 0.59
Implicit modeling 9.79 ± 0.02 3.19 ± 0.01 489.35 ± 0.88 70.18 ± 0.47

Mean (µ) and standard deviation (σ) of TF, TF*, mRNA, and protein. For both µ and σ, the variation
(1 SD) was based on 10 simulations.
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