Supplementary Information

Rational Design of Antisense Oligonucleotides Targeting Single Nucleotide Polymorphisms for Potent and Allele Selective Suppression of Mutant Huntingtin in the CNS

Michael E. Oestergaard,¹ Amber L. Southwell,² Holly Kordasiewicz,¹ Andrew T. Watt,¹ Niels H. Skotte,² Crystal N. Doty,² Kuljeet Vaid,² Erika B. Villanueva,² Eric E. Swayze,¹ C. Frank Bennett,¹ Michael R. Hayden² and Punit P. Seth¹*

¹ Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California, USA.

² Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.

*Email: pseth@isisph.com, tel 760-603-2587

	A A A A A A A A A A A A A A		$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ $	B 125 100- 25 CN 25- CN 25- CN 25- CN	Mutant	(% UTC) WT	(% UTC)
С	Mod.	ASO	Sequence (5' to 3')	T _m mu	T _m wt	$\Delta T_{\rm m}$ (mu-wt)	Ratio
	PS DNA	A1	TAAATTGTCATCACC	53.7	52.2	1.5	2.6
	FANA	A2	TAAATTG <u>T</u> CATCACC	53.8	52.5	1.3	3.4
	FRNA	A3	TAAATTG <u>T</u> CATCACC	54.4	51.8	2.6	2.0
	LNA	A4	TAAATTG <u>T</u> CATCACC	57.7	55.3	2.4	1.9
	α-L-LNA	A5	TAAATTG <u>T</u> CATCACC	56.5	54.5	2.0	1.6
	tcDNA	A6	TAAATTG <u>T</u> CATCACC	53.8	51.7	2.1	3.3
	R-5'MeDNA	A7	TAAATTG <u>T</u> CATCACC	51.2	49.7	1.5	3.3
	Abasic	A8	TAAATTG <u>T</u> CATCACC	43.1	43.8	-0.7	1.1
	UNA	A9	TAAATTG <u>T</u> CATCACC	44.7	42.1	2.6	1.2
	N ³ -CNET	A10	TAAATTG <u>T</u> CATCACC	42.8	43.1	-0.3	1.6
	2S-dT	A11	TAAATTGTCATCACC	53.8	49.1	4.7	3.1
	C5-Propyne	A12	TAAATTG <u>T</u> CATCACC	54.1	50.8	3.3	2.5
	HNA	A13	TAAATTGTCATCACC	55.4	50.5	4.9	3.5
	FHNA	A14	TAAATTG <u>T</u> CATCACC	56.1	50.4	5.7	2.8

Supplementary Figure S1. Introducing chemical modifications into the ASO across from the SNP site does not improve allele selectivity substantially (A) Structures of modifications investigated. (B) Evaluation of ASOs **A1-A14** in GM4022 fibroblasts at a single dose of 2 μ M delivered by electroporation. (C) Summary of sequence, modification patterns, T_m of matched versus mismatched RNA and ratio of wt*HTT*/mu*HTT* mRNA reduction in human GM4022 fibroblasts. Black letters indicate DNA, orange letters indicate MOE and blue nucleotides indicate *S*-cEt nucleotides, underlined red letter is the modified nucleotide across from the SNP, all internucleosidic linkages are phosphorothioate. All error bars are in ±std. dev.

Supplementary Figure S2. Improved discrimination of GT wobble base-pair does not improve allele selectivity. (A) Dose dependent reduction of muHTT mRNA and wtHTT mRNA using ASOs A1, A5, A11, A12 and A14 in human GM4022 fibroblasts. (B) Sequence, chemical design, potency and selectivity in cell culture, and T_m versus matched and mismatched RNA, of ASOs A1, A5, A11, A12 and A14.

Supplementary Figure S3. (**A and B**)Time course for cleavage of **A1/RNA^{mu}** and **A1/RNA^{wt}** heteroduplexes by recombinant human RNase H1, using LCMS to monitor reaction progress. (**C**) Precise identity of cleavage fragments identified from LCMS assay (-4 charge state). Bold underlined nucleotide represents the SNP site while the nucleotides in blue represent the two nucleotide shift between cleavage sites "a" and "b".

С.

Cleavage of fully complementary RNA^{mu} 5'-AGACUUUUUCUGGUGAUGACAAUUUAUUAA

Cleavage	Fragment sequence	m/z found	m/z calculated	MW (Da)
а	5'-AGACUUUUUCUGGUGAUG <u>A</u> -3'	1509.1	1508.9	6039.8
	5'-AGACUUUUUCUGGUGAUG <u>A</u> C-3'	Not found	1585.2	6344.9
b	5'-AGACUUUUUCUGGUGAUG <mark>ACA</mark> -3'	1667.8	1667.5	6674.1
С	5'-AGACUUUUUCUGGUGAUG <u>A</u> CAA-3'	1750.0	1749.8	7003.2
d	5'-AGACUUUUUCUGGUGAUG <u>A</u> CAAU-3'	1825.9	1826.3	7309.4

Cleavage of mismatched RNA^{wt} 5'-AGACUUUUUCUGGUGAUG<u>G</u>CAAUUUAUUAA

Cleavage	Fragment sequence	m/z found	m/z calculated	MW (Da)
а	5'-AGACUUUUUCUGGUGAUG G -3'	not found	1508.9	6039.8
	5'-AGACUUUUUCUGGUGAUG <u>G</u> C-3'	not found	1589.2	6360.9
b	5'-AGACUUUUUCUGGUGAUG <mark>GCA</mark> -3'	1671.2	1671.5	6690.1
С	5'-AGACUUUUUCUGGUGAUG <u>G</u> CAA-3'	1755.0	1753.8	7019.2
d	5'-AGACUUUUUCUGGUGAUG <u>G</u> CAAU-3'	1831.3	1830.3	7325.3

Supplementary Figure 4. T_m of selected ASOs versus matched and mismatched RNA showing that chemical modification at positions 5 and 6 do not alter binding affinity of the ASO for the matched and mismatched RNA.

Mod.	ASO	Sequence (5' to 3')	<i>T</i> _m (mu)	T _m (wt)	IC ₅₀ (μM)	Fold
					mu <i>HTT</i>	Select.
PS DNA	A1	TAAATTG <u>T</u> CATCACC	53.7	52.2	0.29	6.9
2S-dT	A16	TAAATTG <u>T</u> CATCACC	54.8	52.8	0.31	>48
2S-dT	A17	TAAATTGTCATCACC	55.6	53.9	0.21	4.8
<i>R</i> -5'Me-DNA	A18	TAAATTG <u>T</u> CATCACC	52.2	50.0	0.15	4.6
<i>R</i> -5'Me-DNA	A19	TAAATTGTCATCACC	52.0	49.7	0.31	5.7
FANA	A22	TAAATTG <u>T</u> CATCACC	53.4	51.3	0.14	7.4
FANA	A23	TAAATTGTCATCACC	55.0	53.3	0.11	7.1

Black letters indicate DNA, orange letters indicate MOE and blue nucleotides indicate S-cEt nucleotides, underlined letter is the nucleotide across from the SNP site, red letter indicates site of chemical modification. All internucleosidic linkages are phosphorothioate.

Supplementary Figure S5. Rationale for improved allele selectivity observed with *S*-5'-Me-DNA modified ASOs **A18** and **A20** versus *R*-5'-Me-DNA ASOs **A17** and **A19**. (A) Mapping human RNase H cleavage patterns for modified ASOs versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA using gel electrophoresis. Pictorial representation of RNase H1 cleavage patterns versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA for (B) **A17** with *R*-5'-Me-DNA at position 5 (C) **A19** with *R*-5'-Me-DNA at position 5 (E) **A20** with *S*-5'-Me-DNA at position 6.

Α	RNA PS DNA FANA, 5 FANA, 6 R-5'-Me, 6 R-5'Me, 6	S-5'Me, 5 S-5'Me, 6 S-5'Me, 6 2S-dT, 6 FHNA, 5 FHNA, 6 S-CEt, 5 S-CEt, 6 FRNA, 5 FRNA, 5	FRNA, 6 FRNA, 6 FRNA, 5 S-CEL, 5 S-CEL, 5	FHNA, 6 FHNA, 5 2S-dT, 6 2S-dT, 5 2S-dT, 5 S-5'Me, 6 S-5'Me, 6 R-5'Me, 5 R-5'-Me, 5	FANA, 6 FANA, 5 FS UNA RNA
	RNA ^{mu} A' A21 A23 A17 A19	A18 A20 A15 A16 A25 A27 A26 A21 A2	2 A24 A22 A28 A26 A	A27 A25 A16 A15 A20 A18 A19 A17	A23 A21 A1 RNA ^{wt}
		•••••••••			
	IC ₅₀ 0.220.140.111.150.31 (µМ)	10.380.400.310.210.340.750.671.90.6	0 0.77 >25 >19 >3 >22	>20 >44 4.8 >48 >38 16.3 5.7 4.6	7.1 7.4 6.9 Select.
Mo	odification @ po	osition Matcheo	d Duplexes	Mis-matched [Duplexes
	(1050, 00100111	(2)			
В	FANA @ 5 0.14, 7.4	A21 5'-T A A A T T G RNA ^{mu} 3'-A U U U A A C	ECATCACC-3' A AGUAGUGG-5' R	21 <u>5'-TAAATTGI</u> NA ^{Wt 3'-A UUUAACG}	CATCACC-3' GUAGUGG-5'
	FΔΝΔ @ 6	A23 5'-T A A A T T G	TCATCACC-3' A	23 <u>5'-T A A A T T G T</u>	CATCACC-3'
С	0.11, 7.1	RNA ^{mu} 3'-A U U U A A C	AGUAGUGG-5′ R		G U A G U G G-5'
	FRNA @ 5	A22 5'-T A A A T T G	TCATCACC-3' A	22 <u>5'-T A A A T T G T</u>	CATCACC-3'
D	0.60, >19	RNA ^{mu} 3'-A U U U A A C	AGUAGUGG-5′R	NA ^{wt 3'-A UUUAACG} X	G U A G U G G-5'
_	FRNA @ 6	A24 <u>5'-T A A A T T G</u>	TCATCACC-3' A	.24 <u>5'-T A A A T T G T</u>	CATCACC-3'
E	0.77, >25	RNA ^{mu} 3'-A UUUAAC	AGUAGUGG-5′R	NA ^{wt} 3'-A UUUAACC	G U A G U G G-5'

Supplementary Figure S6. Rationale for improved allele selectivity observed with FRNA modified ASOs **A22** and **A24** versus FANA modified ASOs **A21** and **A23**. (A) Mapping RNase H1 cleavage patterns for modified ASOs versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA using gel electrophoresis. Pictorial representation of RNase H1 cleavage patterns versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA using gel electrophoresis. Pictorial representation of RNase H1 cleavage patterns versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA for (B) **A22** with FANA at position 5 (C) **A24** with FANA at position 6 (D) **A22** with FRNA at position 5 (E) **A24** with FRNA at position 6.

Supplementary Figure S7. Rationale for improved allele selectivity observed with FHNA (A25 and A27) and S-cEt (A26 and A28) modified ASOs. (a) Mapping RNase H1 cleavage patterns for modified ASOs versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA using gel electrophoresis. Pictorial representation of RNase H1 cleavage patterns versus matched (**RNA**^{mu}) and mismatched (**RNA**^{wt}) RNA for (b) A25 with FHNA at position 5 (c) A27 with FHNA at position 6 (D) A26 with S-cEt at position 5 (E) A28 with S-cEt at position 6.