
Supplementary material

Supplementary Methods

In addition to ROC curves, we also analysed precision-recall (PR) curves for the cooperative as well as
the inhibitory case. Due to the very low number of true positives, the individual PR curves often have
atypical shapes (suppl. Fig. 1 b-d). Consequently, it is difficult to generate meaningful average curves
from the many experiments on synthetic data which we performed to evaluate MONA.

In order to overcome the problem of atypical PR curves, we have repeated the evaluation on MONA
and MGSA on synthetic data allowing for a larger number of terms being active. We did this for the
cooperative as well as the inhibitory case, for average noise and microRNA influence. Therefore we
sampled up to 30 independent1 terms. It is worth noting that 30 independent active terms is more than
what one may expect in a real world dataset; that is why the resulting PR and ROC curves should be
interpreted with care. In order to illustrate the expected statistics across a large number of runs we
generated a unified PR curve. This can be done by combining all individual runs in one large artificial
dataset. Alternatively, the individual PR curves can be averaged.
Both methods have advantages and important drawbacks: First,the combined PR curve is very sensitive
to outliers where the parameter p (prior probability for a term being active) is estimated too high, which
leads to a high baseline-probability. Only one such case can result in a considerable degradation of
the PR curve as all terms will be considered false positives for relatively low thresholds. Second, it is
consistent with the standard procedure in the machine learning literature to compare the performance
of two classifiers: here, significant differences are established by the pairwise comparison of an algorithm
on a number of individual datasets [1, 2]. This is also how we determine the p-values in the main paper
text. A natural visualization of this is either showing all individual PR curves or the median/average
across all individual curves.
Averaging individual PR curves solves many of these drawbacks. However, information on the consis-
tency of the scores is lost. That is why we illustrate the variation of the scores between runs using
kernel density plots and show PR curves using the two aggregation techniques: via combination into one
artificial dataset as well as via direct averaging of the individual PR curves.

Supplementary Results

In supplementary Figure 2 we show the unified PR curves generated via averaging of the individual PR
curves (from suppl. Figure 3) and via combination in one artificial dataset. It can be seen that the
performance for MONA is superior to the single-level approaches MONA single and MGSA. When the
PR curve is generated by combining all 500 individual datasets into a single one, it can be seen that
MGSA performs better than MONA for very small levels of recall. As discussed in the main text, this
is a consequence of systematic differences between the MCMC sampling approach and EP which results
in a broad distribution of the baseline probability and in turn in a degradation of the PR curve (comp.
supplementary Methods). This is also illustrated in suppl. Fig. 3 (d) where the kernel-density estimate
of the mean posterior probability of a term being on is shown. As discussed above, it can be seen that
while MGSA yields a sharp distribution of the baseline-probabilities, MONA infers a broader distribution
of baseline-probabilities including some few outliers. This results in the degradation of the combined PR
curve (suppl. Fig. 2 (b)). It is important to note that the ranks are inferred correctly (as illustrated in
figure 2 (a)), and the inconsistency of the scores is rather small in absolute numbers (e.g. 0.02 instead
of 0.003 in ’extreme’ cases). Hence, for practical applications this only plays a minor role.

1Due to the large number of terms (resulting from the large assignment matrix) in the inhibitory case, we do not sample
terms with a very large number of children in the GO hierarchy (largest 10%) in order to facilitate efficient sampling.

1



The PR curves also illustrate that MGSA tends to perform better than MONA single-level, especially
for low levels of recall. As discussed in the main paper text, this is also due to the difference in inference
algorithms (exact MCMC vs approximate EP).
As for the cooperative model, the same trends can be seen for the inhibitory model (suppl. Fig. 5-
6): MGSA tends to have a higher precision than MONA single-level, especially for small recall levels.
Furthermore, due to the EP approximation the distribution of baseline probabilities is broader for MONA
than for MGSA, resulting in a degradation of the joint PR curve for very small recalls. However, this
does not affect the ranks and the overall performance of MONA is superior to MGSA, also in terms of
precision-recall.
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Supplementary Figure 1: Precision-recall (PR) curves of MONA and MGSA on the synthetic data for
the cooperative model as described in the main text (medium α and β).
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Supplementary Figure 2: Unified PR curves generated by averaging individual PR curves (a) as well as
by generating one joint curve (b) for the cooperative model. In (c) the averaged ROC curves are shown.
All curves are based on the synthetic dataset with up to 30 active terms.
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Supplementary Figure 3: Individual PR curves with up to 30 active terms (a-c) for the cooperative model
and kernel density plots for the mean posterior probabilities of a term being on as a measure for the
consistency of the scores (d).
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Supplementary Figure 4: Precision-recall (PR) curves of MONA and MGSA on the synthetic data for
the inhibitory model as described in the main text (medium α and β, medium miRNA influence).
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Supplementary Figure 5: Unified PR curves generated by averaging individual PR curves (a) as well as
by generating one joint curve (b) for the inhibitory model. In (c) the averaged ROC curves are shown.
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Supplementary Figure 6: Individual PR curves with up to 30 active terms (a-c) for the inhibitory model
and kernel density plots for the mean posterior probabilities of a term being on as a measure for the
consistency of the scores (d).
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Supplementary Figure 7: Comparison of results obtained from MONA, single species MONA on mRNA
level and single species MONA on methylation level. (a) Term probabilities from MONA (blue), single
species MONA on mRNA level (yellow) and single species MONA on methylation level (green). (b)
For each GO term, p-values of Fisher’s exact test on mRNA and methylation level are plotted against
each other. Active terms resulting from MONA are marked as blue dots, from single species MONA on
mRNA level as yellow dots and from single species MONA on methylation level as green dots. The grey
dots represent terms that were identified by both, MONA and single species MONA on mRNA level.
The size of the dots represents the term probability. (c) Term probabilities from single species MONA
on mRNA level and single species MONA on methylation level are plotted against each other. Active
terms resulting from MONA are marked as dots and are colour- and size-coded by its respective MONA
term probability.
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