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S1 Introduction

This report gives supplementary information to the manuscript “DEXUS: Identifying Differential
Expression in RNA-Seq Studies with Unknown Conditions”. The supplementary informations
contain

a result that with many conditions the detection of differential expression is only possible
with a large number of samples and high coverage;

a description and a motivation of the DEXUS model;

a derivation of the DEXUS model selection algorithm;

information on initialization and hyperparameter adjustment;

results of additional experiments;

methods for calling differentially expressed transcripts;

further details on experiments;

additional information on the DEXUS software, methods compared, data sets, and evalua-
tion criteria.

Summary. Differentially expressed transcripts in RNA-Seq experiments with known conditions
can be detected by current RNA-Seq methods. These methods test differential expression between
two or more known conditions based on read counts per transcript. However in more general study
designs some conditions are usually unknown, though genes may be differentially expressed be-
tween them. Current RNA-Seq methods cannot identify differentially expressed transcripts in data
with unknown conditions. We suggest DEXUS, a statistical model based on finite mixture of neg-
ative binomial distributions to detect differential expression in studies with unknown conditions.

S2 Detection of Differential Expression With Many Conditions is Dif-
ficult

RNA-Seq data are usually represented as read counts per transcript. Read count data from tech-
nical replicates follow a Poisson distribution (Marioni et al. 2008). However read counts from
biological replicates follow a negative binomial distribution (Anders and Huber 2010; Robinson
et al. 2010; Hardcastle and Kelly 2010; Li and Tibshirani 2011; Wu et al. 2013), because the bio-
logical variation leads to overdispersion (Hansen et al. 2011). To confirm these findings, we ana-
lyzed RNA-Seq data sets using different normalizations. An example is the “European HapMap”
data set (Montgomery et al. 2010), which contains RNA-Seq data of 60 individuals. After upper
quartile normalization of these RNA-Seq data, we calculated the variance-to-mean ratio for each
transcript. The density of this ratio is shown in Fig. S1. The vast majority of transcripts has a
variance-to-mean ratio greater than one and, therefore, is in accordance with the negative bino-
mial distribution. The value of this ratio is 1 for the Poisson distribution and smaller than 1 for
the binomial distribution. The density of the variance-to-mean ratio for other RNA-Seq data sets
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Figure S1: Density of the variance-to-mean ratio from RNA-Seq data of 60 individuals (Mont-
gomery et al. 2010). Variance-to-mean ratios around one are characteristic for a Poisson distri-
bution (blue), those smaller than one for a binomial distribution (purple), those larger than one
for a negative binomial distribution (red). Thresholds are set by the test statistics of a Poisson
test. The majority of transcripts has read counts that are in accordance with the negative binomial
distribution.

is very similar to this data set (Bottomly et al. 2011; Pickrell et al. 2010; Blekhman et al. 2010;
Nagalakshmi et al. 2008).

Due to these findings, we assume that read counts of a set of biological replicates follows a
negative binomial distribution with mean expression level µ. The negative binomial distribution
with mean µ and size r (representing the variance) is given by

NB(x; µ, r) =
Γ(x+ r)

Γ(x+ 1)Γ(r)

(
µ

µ+ r

)x ( r

µ+ r

)r
. (S1)

Other parametrizations and properties of the negative binomial distribution are discussed in Sub-
section S3.1.2.

We assume that biological replicates are generated under a particular condition, therefore a set
of biological replicates corresponds to a particular condition. We define differential expression as
different expression level between conditions (sets of replicates), where under each condition read
counts are generated by a particular negative binomial distribution. A transcript is differentially
expressed if (1) the mean expression levels µ for different conditions are different and (2) samples
are observed under at least two different conditions.

If the read count data of a transcript can be explained by one condition, i.e. one negative



S2 Detection of Differential Expression With Many Conditions is Difficult 7

binomial

p(x) = NB(x; µ, r) , (S2)

then this transcript is not differentially expressed. If the read counts follow a mixture of negative
binomials

p(x) =

∫
p(µ) NB(x; µ, r) dµ , (S3)

then the transcript is differentially expressed. Here p(µ) is the distribution of expression levels,
each of which corresponds to a condition. Differential expression is identified by distinguishing a
negative binomial from a mixture of negative binomials using the read count data.

An analytically tractable mixture of negative binomials is the beta negative binomial distribu-
tion (BNB):

BNB(x; ι, κ, r) =

∫ ∞
0

r

(µ+ r)2
B(

µ

µ+ r
; ι, κ)︸ ︷︷ ︸

p(µ)

NB(x; µ, r) dµ , (S4)

where B(a; ι, κ) is the density of the beta distribution with parameters ι and κ. Differential expres-
sion is identified by distinguishing a negative binomial from a beta negative binomial distribution
(BNB) using the read count data.

We want to determine how many read counts and which coverages (given by the µs) are nec-
essary to distinguish a negative binomial from a BNB, i.e. to identify differential expression.
Whether the read count data is better represented by a more complex than by a simpler model
can be decided by means of the Bayesian Information Criterion (BIC):

BICM = − 2 log LM + lM logN , (S5)

where LM is the likelihood of the modelM, lM is the number of parameters of the modelM,
and N is the number of samples. The model with smaller BIC is more appropriate to represent the
data.

If the difference between the BIC of the BNB and the BIC of the negative binomial model
BICBNB−BICNB is negative, then BNB better represents the read counts and hints at differential
expression. The number of parameters are lBNB = 3 and lNB = 2 for these models which should
represent the read counts {x1, . . . , xN} forN samples. Therefore detecting differential expression
requires

BICBNB − BICNB < 0 (S6)

⇔− 2

N∑
k=1

(log BNB(xk)) + 3 logN + 2

N∑
k=1

(log NB(xk)) − 2 logN < 0

⇔2
1

N

N∑
k=1

log

(
NB(xk)

BNB(xk)

)
+

logN

N
< 0 .
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If averaging over data sets {x1, . . . , xN} drawn from the BNB, the following equation holds:

E

(
1

N

N∑
k=1

log

(
NB(xk)

BNB(xk)

))
=

1

N

N∑
k=1

E

(
log

(
NB(xk)

BNB(xk)

))
(S7)

= E

(
log

(
NB(xk)

BNB(xk)

))
,

where E is the expectation under the beta negative binomial distribution BNB. We have to use
the expectation under the BNB, because the read counts are assumed to arise from a transcript
that is differentially expressed. Note that E

(
log
(

NB(xk)
BNB(xk)

))
= −KL(BNB||NB), where KL is

the Kullback-Leibler divergence. If averaging over data sets with N read counts, for differential
expression following criterion is required:

2 E

(
log

(
NB(xk)

BNB(xk)

))
+

logN

N
< 0 (S8)

⇔ N

logN
>

1

2 KL(BNB||NB)
.

The Kullback-Leibler divergence is an asymmetric distance between two distributions. Thus, the
more similar the distributions are to each other, the smaller is the Kullback-Leibler divergence, the
more samples N are required to detect differential expression.

In the following, we compute the number of read counts that are required to detect differential
expression if using the BIC criterion to discriminate between the negative binomial and the BNB.
Fig. S2 shows the first example of a BNB with parameters ι = 204, κ = 400, and r = 40 vs. a
negative binomial with parameters µ = 78.78 and r = 30.81. The Kullback-Leibler divergence of
these two distributions is 0.0002. According to the BIC criterion N=27,700 samples are required
to identify differential expression, that is to detect that the read counts are from the BNB and not
from the negative binomial. Fig. S3 shows a second example a BNB with parameters ι = 40,
κ = 40, and r = 40 vs. a negative binomial with parameters µ = 40.89 and r = 13.07. In
this case the Kullback-Leibler divergence is 0.02 and, therefore, N=1,800 samples are required to
identify differential expression. Fig. S4 shows a third example of a BNB with parameters ι = 40,
κ = 20, and r = 400 vs. a negative binomial with parameters µ = 204.48 and r = 12.7. In
this case the Kullback-Leibler divergence is 0.003 and, therefore, N=1,300 samples are necessary
to identify differential expression. Fig. S5 shows a fourth example of a BNB with parameters
ι = 10, κ = 10, and r = 400 vs. a negative binomial with parameters µ = 435.56 and r = 4.43.
In this case the Kullback-Leibler divergence is 0.03. Only N=89 samples are required to identify
differential expression, because the mean read counts are large. Large mean read counts means
that the coverage is high.
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Figure S2: Probability mass function of a negative binomial distribution with µ = 78.78 and r =
30.81 and beta negative binomial distribution with ι = 204, κ = 400, and r = 40. The inlay figure
shows the distribution p(µ) of the mean read count µ which generates the BNB distribution. The
Kullback-Leibler divergence of these two distributions is 0.0001. According to the BIC criterion
N=27,700 samples are required to identify differential expression.
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Figure S3: Probability mass function of a negative binomial distribution with µ = 40.89 and r =
13.07 and beta negative binomial distribution with ι = 40, κ = 40, and r = 40. The inlay figure
shows the distribution p(µ) of the mean read count µ which generates the BNB distribution. The
Kullback-Leibler divergence of these two distributions is 0.002. According to the BIC criterion
N=1,800 samples are required to identify differential expression.
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Figure S4: Probability mass function of a negative binomial distribution with µ = 204.48 and r =
12.7 and beta negative binomial distribution with ι = 40, κ = 20, and r = 400. The inlay figure
shows the distribution p(µ) of the mean read count µ which generates the BNB distribution. The
Kullback-Leibler divergence of these two distributions is 0.003. According to the BIC criterion
N=1,300 samples are required to identify differential expression.
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Figure S5: Probability mass function of a negative binomial distribution with µ = 435.56 and
r = 4.43 and beta negative binomial distribution with ι = 10, κ = 10, and r = 400. The inlay
figure shows the distribution p(µ) of the mean read count µ which generates the BNB distribution.
The Kullback-Leibler divergence of these two distributions is 0.02. According to the BIC criterion
N=87 samples are required to identify differential expression. The large mean read counts mean
that the coverage is high. High coverage helps to detect differential expression.

If we want to determine whether a transcript is differentially expressed, we have to decide
whether read counts are generated from a negative binomial or from a BNB. As shown above, this
requires either a large number of samples or very high coverage (large µ).

For generating the BNB we used a distribution p(µ) as mixing distribution which is unimodal
(see inlay figures in Fig. S2 to Fig. S5). Other unimodal distributions p(µ) lead to similar results:
it is difficult to distinguish a mixture distribution from a negative binomial. If p(µ) is a weighted
sum of delta distributions, then we obtain a finite mixture of negative binomials, that is a finite
number of conditions:

p(x) =
n∑
i=1

αi NB(x; µi, ri) . (S9)

However, if the number of conditions is large compared to the number of samples, then it is
still difficult to distinguish between a mixture model and a negative binomial using only the read
counts. Thus, it is difficult to detect differential expression if the number of conditions is large
compared to the number of samples.

In the following, we investigate whether a finite mixture of negative binomials can be distin-
guished from a single negative binomial distribution. Trivially, a mixture with only one component
cannot be distinguished from a negative binomial. If one component of the mixture is dominant,
then the mixture is close to a negative binomial. To avoid these trivial cases, we require that, under
each condition, not more than half of the read counts are generated. The second trivial case is that
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all mixture components are identical, where the mixture is a negative binomial. If the means of
the compoment distributions are identical or are locally accumulated, then the mixture is close to
a negative binomial. To avoid these case, we require that the means of the component distributions
are placed equidistantly within a particular range of read counts. Concluding, we require αi ≤ 0.5
and equidistantly distributed µi in a range to avoid trivial degenerated cases for which the mixture
is close to a negative binomial. We will later use the αi and µi to define an informative/non-
informative call for a transcript, see Subsection S3.3. We choose the range of read counts between
0 and 150 similar to the example depicted in Fig. S2. First we construct a mixture of 10 negative
binomials, where ri are set to 50 and the mixture weights αi follow a unimodal distribution. As
shown in Fig. S6, the mixture and the negative binomial are hard to distinguish. Next we construct
a mixture of two negative binomials. Now the mixture can be distinguished from the negative
binomial as shown in Fig. S7. Note that all parameters are optimized to make the mixture as close
as possible to the negative binomial. In contrast to the negative binomial, the mixture is a bino-
mial distribution. Further the probability mass at the tails of the negative binomial is smaller than
the mass of the mixture. This example shows that a mixture can be distinguished from a single
negative binomial, if there are few conditions compared to the number of read counts.

Distribution

Mixture

NB

0.0000

0.0025

0.0050

0.0075

0 100 200

read count

0.000

0.005

0.010

0.015

read count
0 100 200 300

Figure S6: Probability mass function of a negative binomial distribution with µ = 75.22 and
r = 8.87 and a mixture of negative binomial distributions with mean parameters µi equidistantly
in the range [0, 150], ri set to 50, and non-zero mixture weights αi. The inlay figure shows the
probability mass functions of the 10 negative binomial distributions of the mixture. The Kullback-
Leibler divergence of these two distributions is 0.007.
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Figure S7: Probability mass function of a negative binomial distribution with µ = 75.07 and
r = 15.08 and a mixture of two negative binomial distributions with mean parameters equidis-
tantly in [0, 150] that is (µ1, µ2) = (50, 100), with (r1, r2) = (50, 50), and with mixture weights
(α1, α2) = (0.5, 0.5). The inlay figure shows the probability mass functions of the two negative
binomial distributions of the mixture. The Kullback-Leibler divergence of these two distributions
is 0.49.

Therefore we assume that the number of conditions (the number of sets of replicates)
is small compared to the number of samples. We will demonstrate that under this assumption
differentially expressed transcripts can be detected. As we show in the experiments, the detection
of differential expression is more reliable with more samples in each of the conditions and with
larger differences of the mean expression levels of the conditions.

S3 The DEXUS Method

In the first subsection, we introduce and motivate the DEXUS model, which is a finite mixture of
negative binomials (as motivated in previous section). In the second subsection, we explain how
DEXUS selects a model using read count data. Model selection is based on a Bayesian framework
for maximizing the parameter posterior via an expectation maximization (EM) algorithm. The next
subsection focuses on how to determine whether transcripts are differentially expressed. In the last
subsection we investigate the sensitivity of a hyperparameter of DEXUS.

S3.1 The Mixture of Negative Binomials Model

In this subsection, we introduce and motivate the DEXUS model. Read counts per sample are
modeled across samples for a gene, an exon, or a transcript. The following Subsection S3.1.1
introduces the finite mixture of negative binomial distributions model as motivated in previous



S3 The DEXUS Method 15

Section S2. Subsection S3.1.2 explains why we have chosen a particular parametrization of the
negative binomial distribution. In the next Subsection S3.1.3 we show that the model is identifiable
which is essential to infer parameters and to detect differential expression.

S3.1.1 The Model

As motivated in Section S2, read counts are distributed according to a finite mixture negative
binomial distributions. Each mixture component corresponds to a condition, that is, the read
counts are generated under this condition. A transcript is differentially expressed if read counts
are generated under at least two different conditions with different expression levels µ.

If αi is the probability of being in condition i, then read count x is distributed according to:

p(x) =
n∑
i=1

αi NB(x; µi, ri) , (S10)

where NB(x; µi, ri) is probability mass function of the negative binomial distribution with mean
µi and size ri. The αi ≥ 0 are the non-negative mixture weights of the mixture model and sum to
one:

∑n
i=1 αi = 1. The DEXUS model is a finite mixture of negative binomial distributions. As

motivated in Section S2, we assume that the number of conditions n is smaller than the number of
samples N : n < N .

S3.1.2 Parametrization of the Negative Binomial Distribution

We use the (µ, r)-parametrization of the negative binomial distribution (also called the mean-
size-parametrization). The (p, r)-parametrization is the standard way to parametrize the negative
binomial distribution. In the standard interpretation, p is the probability of success with p ∈ [0, 1]
and r is the number of failures with r ∈ N. The probability mass function of the negative binomial
in the (p, r)-parametrization is

NBpr(x; p, r) =
(x+ r − 1)!

x! (r − 1)!
(1− p)r px , (S11)

where x is the number of successes until r failures are observed (note that the last observation
must be a failure). The variance of the negative binomial is

σ2 =
pr

(1− p)2
. (S12)

We chose a parametrization that includes µ because for RNA-Seq data with read counts per
transcript, the mean read count is an important information. The mean is the expected or noise-
free read count for a given condition and allows to determine whether transcripts are differentially
expressed between conditions. Therefore in RNA-Seq applications, the negative binomial is re-
parametrized using the mean parameter µ ∈ R+ instead of the probability p. Furthermore in RNA-
Seq applications, the overdispersion parameter φ ∈ R+ is of interest to capture technical and bio-
logical variance which allows assessing the data quality. The overdispersion parameter measures
how far the variance of the negative binomial exceeds the variance of a Poisson distribution, for
which the variance is equal to the mean. These two parameters lead to the (µ, φ)-parametrization
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of the negative binomial. The overdispersion parameter φ and the size parameter r have a very
simple relationship: φ = 1/r, i.e. the overdispersion is the inverse of the size parameter. The
relationship between the parametrization (µ, φ) and (p, r) is:

µ =
pr

1− p
⇒ p =

µ

µ+ r
φ =

1

r
⇒ r = φ−1 (S13)

We will choose r instead of φ in order to define a prior on r in a Bayesian framework. This
prior gives larger overdispersions higher probabilities, which is essential to improve the parameter
estimator for small sample sizes (see Subsection S3.2.1).

To represent all overdispersions φ and to perform model selection in a continuous space, real
positive values of r are required. The definition Eq. (S11) can be generalized to r ∈ R+ by using
the Γ-function instead of the factorial. Using positive real r, the probability mass function of the
negative binomial for the (µ, r)-parametrization is

NB(x; µ, r) =
Γ(x+ r)

Γ(x+ 1)Γ(r)

(
µ

µ+ r

)x ( r

µ+ r

)r
. (S14)

The variance of the negative binomial with the (µ, φ)-parametrization or the (µ, r)-parametrization
is

σ2 =

µ
µ+r r(

1− µ
µ+r

)2 = µ +
1

r
µ2 = µ + φ µ2 . (S15)

If DEXUS is applied to data with known conditions, we require an estimator of (µ, r) of a
negative binomial distribution. In particular we require this estimator for the initialization of the
EM algorithm in Subsection S3.2.4. We use the maximum likelihood estimator. Given a data set
x = (x1, . . . , xN ) of counts of N samples, the maximum likelihood estimators for the (µ, r)-
parametrization are as follows:

The maximum likelihood estimator µML for µ is

µML =
1

N

N∑
k=1

xk . (S16)

A closed form for the maximum likelihood estimator rML for r does not exist. However
following equation can be solved for rML:

N∑
k=1

ψ(xk + rML) − N ψ(rML) + N log

(
rML

rML + 1
N

∑N
k=1 xk

)
= 0 , (S17)

where ψ is the digamma function. The solution can be obtained numerically.

The estimator (µML, rML) is asymptotically unbiased and efficient. For finite sample size,
however, neither the bias nor the variance of the estimator rML exists, because for data whose
mean exceeds the variance r tends to infinity (Anscombe 1950).
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S3.1.3 Identifiability of the Model

Finite mixtures of non-degenerate negative binomial distributions are identifiable (Yakowitz and
Spragins 1968). For identifiable mixtures, Eq. (3) in (Yakowitz and Spragins 1968) and the text
thereafter states that from

n∑
i=1

αi NB(x; µi, ri) =

n∑
i=1

α′i NB(x; µ′i, r
′
i) . (S18)

follows

αi = α′i (S19)

µi = µ′i

ri = r′i .

We assumed that the components are sorted (avoids ambiguities through permutations of the com-
ponents) and that the distributions of the components are mutually different (avoids ambiguous
splitting of one component into more).

Identifiability is required for the maximum likelihood estimator to be consistent. Consistency
means that a parameter estimator converges with more data points to the true parameter values.
Since the parameter space will be made compact, the mixture model is continuous in its parame-
ters, and the log mixture distribution can be bounded, the maximum likelihood estimator for the
mixture of negative binomials is consistent. Note that below we will introduce an upper bound
rmax for the size parameter r and a lower bound µmin for the mean parameter of the negative
binomial distributions.

More importantly, identifiability of the mixture of negative binomials guarantees that differen-
tial expressed transcripts can be detected if sufficiently many read counts are available.

S3.2 Model Selection

In the next Subsection S3.2.1, DEXUS’ expectation maximization (EM) algorithm for model se-
lection is derived. We first define the Bayesian framework, then chose appropriate priors for the
parameters, then derive a bound on the parameter posterior using the chosen priors, and then use
this bound to derive the E-step and the M-step of the EM algorithm. This subsection is one of the
central parts of this supplementary. The following Subsection S3.2.2 describes the case when the
variance-to-mean ratio of one negative binomial is approaching one and converges toward a Pois-
son distribution. The next Subsection S3.2.3 summarizes DEXUS update rules for the iterative
EM algorithm. Then Subsection S3.3 describes the initialization for the DEXUS model selection
algorithm. The final Subsection S3.2.5 shows how the hyperparameter for the size parameter prior
is adjusted depending on the number of samples.

S3.2.1 Derivation of the EM Algorithm

In a Bayes framework for model selection, α = (α1, . . . , αn), µ = (µ1, . . . , µn), and r =
(r1, . . . , rn) are considered as random variables, thus, p(x) in Eq. (S10) becomes a conditional
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probability p(x | α,µ, r), i.e. the likelihood that read count x has been produced by the model
with parameters α, µ, and r. The expectation maximization (EM) algorithm (Dempster et al.
1977) minimizes an upper bound on the negative log-posterior of the parameters. The parameter
posterior of α, µ, and r is given by:

p(µ, r,α | x) =
p(x | µ, r,α) p(α) p(r)p(µ)∫

p(x | µ, r,α) p(α) p(r) p(µ) dα dr dµ
(S20)

=
1

c(x)
p(x | µ, r,α) p(α) p(r) p(µ) ,

where we assumed that the priors for α, µ and r are independent of each other.

For deriving an upper bound on the log posterior as required by the EM algorithm, we deduce
the following inequality for one sample x by introducing variables α̂i with

∑n
i=1 α̂i = 1:

− log p(µ, r,α | x) (S21)

= − log
n∑
i=1

α̂i
α̂i

αi NB(x; µi, ri) − log p(α) − log p(µ) − log p(r) + log(c(x))

≤ −
n∑
i=1

α̂i log

(
αi
α̂i

NB(x; µi, ri)

)
− log p(α) − log p(µ) − log p(r) + log(c(x)) (∗)

= −
n∑
i=1

α̂i log (αi NB(x; µi, ri)) − log p(α) − log p(µ) − log p(r)

+
n∑
i=1

α̂i log α̂i + log(c(x)) ,

where c(x) is independent of the parameters α, µ and r. We applied Jensen’s inequality to obtain
the line ending with the (∗)-sign.

To derive an EM algorithm, we have to choose appropriate priors for the mixture weights
p(α), the overdispersion parameters p(r), and the means p(µ).

Dirichlet Prior on Mixture Weights. In the DEXUS model, the prior p(α) on the mixture
weights α should incorporate the prior knowledge that most transcripts are not differentially ex-
pressed into the model. The prior should represent the null hypothesis that the read counts are
generated under only one condition. Such a prior enforces a low false discovery rate at the de-
tection of differentially expressed transcripts because, for ambiguous data, read counts are not
explained by differential expression.

A Dirichlet prior with parameters γ is well suited to represent this null hypothesis:

p(α) = D(α;γ) = b(γ)
n∏
i=1

αγi−1i , (S22)

where α an the n-dimensional probability vector, i.e. α1, . . . , αn ≥ 0 and
∑n

i=1 αi = 1. Each
component αi is distributed according to a beta distribution with the following properties:

mean(αi) =
γi
γs
, (S23)
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mode(αi) =
γi − 1

γs − n
, (S24)

var(αi) =
γi (γs − γi)
γ2s (γs + 1)

, (S25)

where we set

γs =

n∑
i=1

γi . (S26)

To express our prior knowledge that most genes are not differentially expressed, we set γ1 �
γi (for i > 1). This setting of the values ensures that the model tries to explain the data by one
mixture component, that is a single negative binomial distribution. For i 6= 1 we set γi = 1 in
order to enforce a mode at zero. Therefore for most drawn α, the component αi is zero for i 6= 1.
This reduces the number of hyperparameters to just one, which is γ1.

We set the parameter γ of the Dirichlet prior to

γ = (1 +G, 1, ..., 1). (S27)

This simplifies the setting of the hyperparameters to one hyperparameter G. In all experiments we
set G = 1.

Truncated Exponential Priors on the Size Parameter. The maximum likelihood solution rML,
given in Eq. (S17), for the negative binomial tends to overestimate the true size parameter r
(Piegorsch 1990). Therefore, we introduce a prior p(ri) on ri for each condition i, which prefers
small ri-values. As prior for ri we use an exponential distribution with parameter η:

p(ri) = EXP(ri) = η e−ηri . (S28)

Thus, the prior of r is EXP(r) =
∏n
i=1 EXP(ri).

We truncate this exponential distribution at rmax in order to enforce a lower bound of 1/rmax

on the overdispersion. This bound is important to make the parameter space compact and, there-
fore, to ensure that the maximum likelihood estimator is consistent. Thus our prior is actually a
truncated exponential distribution.

Furthermore, the bound ensures a certain minimal overdispersion for each gene which is an-
other prior knowledge that we include for model selection. We follow Anders and Huber (2010)
in their implementation of DESeq and set rmax = 13.0. Truncating the exponential distribution
changes the distribution only by a normalizing constant. In order to keep the notation uncluttered,
we derive the algorithm without denoting this normalizing constant. Note that nothing changes in
the derivation except that we have the constraint that ri < rmax for all i.
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Uniform Prior for the Mean Parameter. If, in one condition, all read counts are close to zero
(the transcript is not present), the estimate of the mean of the negative binomial would not con-
verge. The reason is that the parameter space is not compact as µ = 0 is excluded. A compact
parameter space is required to ensure consistency of the maximum likelihood estimator.

To make the parameter space compact, we introduce a lower bound µmin on µi. We implement
this bound by a uniform prior on µi on the interval [µmin,maxk xk]. In all experiments we used
µmin = 0.5.

Graphical Representation of the Model A graphical representation of the model including the
parameters and hyperparameters is given in Figure S8.

  

Figure S8: Graphical representation of the DEXUS model as directed acyclic graph. Squares
represent hyperparameters, white circles model parameters and black circles given data.

Bound on the Posterior Using Priors and All Data. Using these priors, the upper bound in
Eq. (S21) on the posterior becomes:

−
n∑
i=1

α̂i log (αi NB(x; µi, ri)) − log D(α) − log EXP(r) +

n∑
i=1

α̂i log α̂i + log(c(x)) .

(S29)

The prior on µ is constant and, therefore, is absorbed in c(x). During the EM algorithm µ values
smaller than µmin are projected back to µmin, which corresponds to the maximum a posterior value
given the uniform prior.

The likelihood for the whole data set {x1, . . . , xN} of N samples is the product of the likeli-
hoods for data points xk. Thus, the log likelihood is a sum over the log likelihoods for data points
xk. That means the inequality in Eq. (S21) can be applied to each single data point xk, where α̂i
is replaced by α̃ik. Therefore, the upper bound B on the scaled (by 1

N ) negative log-posterior for
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a data set {x1, . . . , xN} is:

B = − 1

N

N∑
k=1

n∑
i=1

α̃ik log (αi NB(xk; µi, ri)) −
1

N
log D(α) − 1

N
log EXP(r)

+
1

N

N∑
k=1

n∑
i=1

α̃ik log α̃ik +
1

N

N∑
k=1

log(c(xk)) . (S30)

In above formula, the log of the negative binomial probability mass function is

log NB(x; µi, ri) = log((x+ ri − 1)!) − log(x!) − log((ri − 1)!) (S31)

+ x log

(
µi

µi + ri

)
+ ri log

(
ri

µi + ri

)
.

E-step: Optimization w.r.t. Posterior Estimates. For the E-step the upper bound B Eq. (S30)
on the negative log posterior must be minimized with respect to α̃ik. The condition

n∑
i=1

α̃ik = 1 (S32)

must hold to ensure that the posterior mixture weights are an n-dimensional probability vector.
The bound B ensures that the α̃ik are positive via the log.

The Lagrangian using only terms in α̃ik is

L = − 1

N

N∑
k=1

n∑
i=1

α̃ik log (αi NB(xk; µi, ri))

+
1

N

N∑
k=1

n∑
i=1

α̃ik log α̃ik − λk

(
n∑
i=1

α̃ik − 1

)
, (S33)

where λk is the Lagrange multiplier for the k-th constraint given by Eq. (S32).

For the optimal value, the derivative of the Lagrangian L with respect to to α̃ik must be zero:

∂L

∂α̃ik
= − 1

N
log (αi NB(xk; µi, ri)) +

1

N
(log α̃ik + 1) − λk = 0 . (S34)

This equation can be solved for α̃ik:

α̃ik = αi NB(xk; µi, ri) e
Nλk−1 . (S35)

Exponentiation during solving the equation ensures positive α̃ik. Summing over i from 1 to n
gives

eNλk−1 =
1∑n

i=1 αi NB(xk; µi, ri)
. (S36)
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Inserting this equation into Eq. (S35) gives:

α̃ik =
αi NB(xk; µi, ri)∑n
i=1 αi NB(xk; µi, ri)

. (S37)

Note that the optimal α̃ik is the posterior of condition i in the mixture model given data point
xk. αi = p(i) is the prior for condition i and p(xk | i) = NB(xk; µi, ri) is the likelihood for
condition i, and α̃ik = p(i | xk) the posterior for condition i. αi can be decomposed into αik:

αi = p(i) =
∞∑
x=0

p(i, x) =
∞∑
x=0

p(i | x) p(x) = Ep(x) (p(i | x)) (S38)

≈ 1

N

N∑
k=1

p(i | xk) =
1

N

N∑
k=1

αik .

Therefore, we estimate αi by α̂i:

α̂i =
1

N

N∑
k=1

α̃ik . (S39)

This estimate α̂i is used in the update rules below.

M-step: Optimization w.r.t. Mean. In the M-step, we minimize the upper bound B Eq. (S30)
on the negative log posterior with respect to all parameters µ, r, and α.

First we minimize B with respect to µi, where only terms depending on µi are considered:

min
µi

− 1

N

N∑
k=1

n∑
i=1

α̃ik log (αiNB(xk; µi, ri)) . (S40)

The derivative of the log negative binomial distribution Eq. (S31) with respect to µi is

∂ log NB(xk; µi, ri)

∂µi
= xk

(
µi + ri
µi

) (
ri

(µi + ri)
2

)
− ri

(
µi + ri
ri

)
ri

(µi + ri)
2

= xk

(
ri − µi ri
µi (µi + ri)

)
=

(
xk − µi

µi + r−1i µ2i

)
. (S41)

The derivative of the upper bound B Eq. (S30) with respect to µi is

∂B

∂µi
= − 1

N

N∑
k=1

α̃ik

(
xk − µi

µi + r−1i µ2i

)
. (S42)

At the minimum, this derivative must be zero. Setting the derivative equal to zero and solving
for µi gives the update rule

µi =

∑N
k=1 α̃ik xk
N α̂i

. (S43)

The update is simply a weighted mean, where the weight α̃ik is the posterior of condition i for
data xk. α̃ik reflects how likely xk was generated under condition i. Note that the update does
not depend on other parameters. Since we have introduced a uniform prior of µi on the compact
interval [µmin,maxk xk], µi that exceed this interval after being updated are projected back to it.
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M-step: Optimization w.r.t. Size Parameter Secondly we minimizeB with respect to ri. Only
terms of B that depend on ri are considered:

min
ri

− 1

N

N∑
k=1

n∑
i=1

α̃ik log (αi NB(xk; µi, ri)) −
1

N
log EXP(r) (S44)

The derivative of the log negative binomial Eq. (S31) with respect to ri is:

∂

∂ri
log NB(x; µi, ri) = ψ(x+ ri) − ψ(ri) −

x− µi
µi + ri

− log

(
ri

µi + ri

)
, (S45)

where ψ(x) is the digamma function. The derivative of the log exponential with respect to ri is

∂

∂ri
log EXP(r) =

∂

∂ri
log

(
n∏
i=1

ηe−ηri

)
= − η . (S46)

The derivative of the upper bound B Eq. (S30) with respect to ri is

∂B

∂ri
= − 1

N

N∑
k=1

[
α̃ik ψ(x+ ri) − ψ(ri) −

xk − µi
µi + ri

− log

(
ri

µi + ri

)]
+

1

N
η . (S47)

This derivative depends on the parameter µi, where we have to use the new value for µi: µi =
(
∑N

k=1 α̃ikxk)/(Nα̂i). The term
∑N

k=1 α̃ik(xk − µi)/(µi + ri) is zero, because
∑N

k=1 α̃ikxk =

Nα̂iµi according to the µi update Eq. (S43) and µi
∑N

k=1 α̃ik = Nα̂iµi.

At the minimum this derivative must be zero, which leads to

N∑
k=1

α̃ik ψ(xk + ri) − ψ(ri)
N∑
k=1

α̃ik + log

(
ri

µi + ri

) N∑
k=1

α̃ik − η = 0 . (S48)

Inserting the new value for µi into this equation results in

N∑
k=1

α̃ik ψ(xk + ri) − N α̂i ψ(ri) + N α̂i log

(
ri α̂i

1
N

∑N
k=1 α̃ik xk + ri α̂i

)
− η = 0 .

(S49)

This equation cannot be solved for ri in a closed form. However, the parameter ri can be obtained
by solving this equation numerically. Since it is an equation in one variable, we use a simple
bisection procedure.

Without a prior on ri, the term − 1
N log EXP(r) vanishes in Eq. (S44) and the equation which

must be solved for ri becomes

N∑
k=1

α̃ik ψ(xk + ri) − N αi ψ(ri) + N α̂i log

(
ri

µi + ri

)
= 0 . (S50)

Only the term −η vanishes in comparison to Eq. (S49), i.e., the equation obtained with the prior.
Since we have introduced an exponential prior of ri on the compact interval [0, rmax], ri for which
ri > rmax holds after being updated are set equal to rmax.
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M-step: Optimization of Mixture Weights Thirdly we minimize B with respect to α with the
constraint that the αi sum to 1. Only terms depending on α are considered:

min
α

− 1

N

N∑
k=1

n∑
i=1

α̃ik logαi −
1

N
log D(α) (S51)

s.t.
n∑
i=1

αi = 1 .

The objective ensures that αi > 0. The Lagrangian is

L = − 1

N

N∑
k=1

n∑
i=1

α̃ik logαi −
1

N
log p(α) + ρ

(
n∑
i=1

αi − 1

)
(S52)

= − 1

N

N∑
k=1

n∑
i=1

α̃ik logαi −
1

N

n∑
i=1

(γi − 1) logαi + ρ

(
n∑
i=1

αi − 1

)
,

where ρ is the Lagrange multiplier for the constraint. The solution requires that the derivative of
L with respect to αi is zero:

∂L

∂αi
= − 1

N

N∑
k=1

α̃ik
1

αi
− 1

N
(γi − 1)

1

αi
+ ρ = 0 . (S53)

Multiplying this equation by αi gives

− 1

N

N∑
k=1

α̃ik −
1

N
(γi − 1) + ρ αi = 0 . (S54)

Summation over i leads to

1 +
1

N
(γs − n) = ρ , (S55)

where γs =
∑

i γi. Inserting this expression for ρ into Eq. (S54) gives

− 1

N

N∑
k=1

α̃ik −
1

N
(γi − 1) +

(
1 +

1

N
(γs − n)

)
αi = 0 . (S56)

Solving this equation for αi using α̂i = 1
N

∑N
k=1 α̃ik leads to the update formula for αi:

αi =
α̂i + 1

N (γi − 1)

1 + 1
N (γs − n)

. (S57)

S3.2.2 Variance-To-Mean Ratio Approaching One

The variance-to-mean ratio of negative binomials is bounded from below by one, since σ2/µ =
(µ+ µ2/r)/µ = 1 + µ/r. For data with variance-to-mean ratio smaller than one, the size param-
eter r increases continuously during the EM algorithm. For numerical stability of the algorithm,
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we approximate the distribution of the negative binomial for large values of r with a Poisson dis-
tribution. As mentioned before we use a truncated exponential function as a prior on r for which
r < rmax (default rmax = 13.0). If the r-update leads to an r larger equal rmax and rmax is set to
a value higher than 10,000, then we switch to the Poisson distribution for the according condition.

For r →∞, the negative binomial converges to a Poisson distribution:

NB(x; µ, r) =
Γ(x+ r)

Γ(x+ 1)Γ(r)

(
r

r + µ

)r ( µ

r + µ

)x
(S58)

=
µx

Γ(x+ 1)

Γ(x+ r)

Γ(r)(r + µ)x

(
1

1 + µ
r

)r
lim
r→∞

NB(x; µ, r) = lim
r→∞

µx

Γ(x+ 1)︸ ︷︷ ︸
µx/x!

Γ(x+ r)

Γ(r)(r + µ)x︸ ︷︷ ︸
1

(
1

1 + µ
r

)r
︸ ︷︷ ︸

e−µ

=
µx

x!
e−µ = P(x; µ) ,

(S59)

where P(x; µ) is the Poisson probability mass function with parameter µ evaluated at x. Note,
that Γ(x+ 1) = x! for integer x.

S3.2.3 Update Rules

We summarize the update rules for the EM algorithm. The update rules are:

posterior estimate

α̂i =
1

N

N∑
k=1

α̃ik , (S60)

µ update

µtemp
i =

∑N
k=1 α̃ik xk
N α̂i

,

µi = max{µtemp
i , µmin}. (S61)

r update
The numeric solution f the following equationor rtemp

i of the equation:

N∑
k=1

α̃ik ψ(xk + rtemp
i ) − N α̂i ψ(rtemp

i ) + (S62)

+ N α̂i log

(
rtemp
i α̂i

1
N

∑N
k=1 α̃ik xk + rtemp

i α̂i

)
− η = 0 ,

where ψ is the digamma function. We use a bisection procedure to find the rtemp
i . We then

have to map rtemp
i to the allowed parameter space:

ri = min{rtemp
i , rmax}. (S63)
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α update

αi =
α̂i + 1

N (γi − 1)

1 + 1
N (γs − n)

. (S64)

S3.2.4 Initialization

First we apply a k-means clustering algorithm (Hartigan and Wong 1979) with n centers ten times
to the log read count data (adding a pseudo-count of 0.01 to avoid undefined values).

From these ten results, we select the result with minimal ratio between within-cluster distances
to between-cluster distances of the log read counts. For each cluster i = 1, . . . , n we calculate
the maximum likelihood estimators for µi and ri of a negative binomial distribution using only
read counts that belong to this cluster. These estimators are given in Eq. (S16) and Eq. (S17).
After this estimations, the overdispersion parameter ri bounded by ri ≤ rmax. The values αi are
initialized by αi = 1/n, which is n-dimensional probability vector with maximum entropy. This
initialization does not prefer any condition. Note that initializing an αi close to zero would clamp
condition i to zero.

S3.2.5 Adjusting the Hyperparameter for the Size Parameter Prior

As mentioned in Subsection S3.1.2, for finite sample size N , neither the bias nor the variance of
the maximum likelihood estimator rML exists, because for data whose mean exceeds the variance
r tends to infinity (Anscombe 1950). We empirically calculate a conditional bias, which is the
bias under the condition that the mean is larger than the variance for the data set. For 10,000
experiments, we draw counts from a negative binomial distribution, removed experiments with
mean larger than the variance, and computed the estimator rML for each experiment. Fig. S9
shows that the maximum likelihood estimator rML overestimates the true r for a small number
of samples. Further it is shown that our truncated exponential prior on r reduces the effect of
the overestimation for the maximum a posterior estimator. Both the bias and the variance of
the maximum a posterior estimator is smaller than for the maximum likelihood estimator. The
data underlying Fig. S9 were generated by drawing each r a normal distribution with mean 1.0
and standard deviation 0.1. Using this r and µ = 20 for the parameters of a negative binomial
distribution, five data points were drawn. With these five data points, for r the maximum likelihood
estimator and the maximum a posterior estimator with η = 0.8 were calculated.
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Figure S9: The bias of the maximum likelihood estimator rML. Left panel: In the left column “r”
the true size parameters r are plotted. The middle column “rML” shows the maximum likelihood
estimators for r. The right column “rMAP” gives the maximum a posterior estimators using
our exponential prior on r. Red lines depict the mean of the according (estimated) parameters.
Right panel: The same data as in the left panel but now presented as as boxplots. The maximum
likelihood estimator overestimates the true r. Both the bias and the variance of the maximum a
posterior estimator is smaller than for the maximum likelihood estimator.

In Subsection S3.2.1 we introduced a truncated exponential function with hyperparameter η
as a prior on the size parameter r. This prior prefers small r and countermands the bias of the
maximum likelihood estimator rML if using the maximum a posterior estimate. Note, that smaller
estimates of r also reduce the variance of the estimator because r is bounded from below by zero.
Thus, by adjusting η we can decrease both the bias and the variance of the maximum a posterior
estimator, and hence the mean squared error (MSE). We analyzed the effect of different values for
η for a large variety of values for µ, r, and number of samples N on the MSE, bias, and variance
of the maximum a posterior estimator. Fig. S10 presents for the maximum a posterior estimator
the mean over 10,000 experiments of the MSE, bias, and variance for different values of η. A data
set ofN = 10 data points is drawn from a negative binomial with parameters µ = 50 and r = 0.8.
The variance of the estimator decreases with increasing η, because of the lower bound at zero. The
squared bias is minimal at η = 1.6. The MSE is minimal at 2.9.
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Figure S10: The mean squared error (MSE) of the maximum a posterior estimator for r. The
hyperparameter η (x-axis) is plotted against the MSE (y-axis). Each box shows means of 10,000
experiments. One experiment consists of N = 10 data points, that were drawn from a negative
binomial distribution with r = 0.8 and µ = 50. The variance of the estimator decreases with with
increasing η, whereas the squared bias is minimal at η = 1.6. The MSE is minimal at 2.9.

With increasing mean µ, both the variance and the mean squared error (MSE) of the maximum
likelihood estimator decrease, as can be seen in Fig S11 for a mean over 10,000 experiments. One
experiment of N = 10 data points is drawn from a negative binomial with µ = (4, 8, 16, . . . , 40)
and r = 0.8. Thus, larger µ needs less regularization by the prior to obtain a minimal MSE for the
maximum posterior estimate. Therefore, η is selected depending on the µ of the particular gene
or transcript that is analyzed. We compute an optimal η for each transcript using only a single
hyperparameter θ for a data set. η is computed for each transcript with read counts xi from θ by:

η =
θ

1 + µML
, (S65)

where µML = 1/N
∑N

i=1 xi is the mean read count for the transcript that is analyzed. µML is the
maximum likelihood estimator for µ of a negative binomial according to Eq. (S16).
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Figure S11: The mean squared error (MSE) of the maximum likelihood estimator rML for different
means µ. The mean µ of the negative binomial distribution (x-axis) is plotted against the MSE
(y-axis). Each box shows means of 10,000 experiments. One experiment consists of N = 10
data points, that were drawn from a negative binomial distribution with r = 0.8 and µ varying
from 4 to 40. Both the mean squared error and the variance of the maximum likelihood estimator
decrease with increasing µ. Thus, larger µ need less regularization by the prior to obtain an optimal
maximum a posterior estimate.

S3.3 Calling Differentially Expressed Transcripts and I/NI Call

We suggest DEXUS for identifying differentially expressed transcripts in RNA-Seq data with
unknown condition. In the E-step of the EM algorithm, αik estimates under which condition i
read count xk of a particular transcript was obtained.

In Subsection S3.2.1 in paragraph “E-step: Optimization w.r.t. Posterior Estimates” we noted
that α̃ik is the posterior of condition i in the mixture model given data point xk. αi = p(i)
is the prior for condition i, p(xk | i) = NB(xk; µi, ri) is the likelihood for condition i, and
α̃ik = p(i | xk) the posterior for condition i. According to the Bayes formula the posterior is

αik =
αi NB(xk; pi, ri)∑n
i=1 αi NB(xk; pi, ri)

. (S66)

In the Bayes interpretation, the prior αi = p(i) gives the probability of drawing from condition i
without seeing any data, while the posterior α̃ik = p(i | xk) is the probability of xk being drawn
from condition i. This means that the prior probability of the condition under which a read count
is drawn (without seeing the read count) changes to the posterior probability after having observed
the read count.
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The posteriors α̃ik are important to decide whether any two read counts are generated under the
same or under different conditions. If any two read counts are generated under different conditions
with different read count distributions, the according transcript is differentially expressed.

In the following, we have to distinguish between two cases: (i) data with known conditions and
(ii) data with unknown conditions. For (i) data with known conditions, the α̃ik are given. However
the transcript may have the same read count distribution under the different conditions. To decide
whether a transcript is differentially expressed in different given conditions, we have to determine
whether read counts of different conditions arise from the same or from a different distribution.
For (ii) data with unknown conditions, the EM algorithm ensures that different conditions have
different read count distributions. The likelihood that a transcript is differentially expressed in-
creases both with the likelihood that at least two conditions are observed and with the distance
between the read count distributions of the conditions.

In the following subsections we consider first the case (i) data with known conditions and then
case (ii) data with unknown conditions.

S3.3.1 Data with Known Conditions

For data with known conditions, the condition under which the read count xk was generated is
known. Therefore the αik values are binary: αik is one if xk is generated under the i-th condition
and zero otherwise.

αik =

{
1 if xk is drawn under condition i
0 if xk is not drawn under condition i

. (S67)

The update rules in Subsection S3.2.3 simplify to the maximum likelihood estimators Eq. (S16)
and Eq. (S17) from Subsection S3.1.2 for each condition. The regularization parameter η can be
used to determine a maximum a posterior estimate for r.

Two conditions: An exact test for differential expression between two conditions. We use
the test suggested by Robinson and Smyth (2008) and Anders and Huber (2010), which is im-
plemented in the R package DESeq. We use the function nbinomTestForMatrices of the R
package DESeq. It is a test of the null hypothesis that the means of read count distributions for
the two conditions 1 and 2 are equal. Like Fisher’s exact test, this test is a conditional test with
the condition that the sum of all read counts has a particular value. We have N read counts xk
of which the N1 read counts x1, . . . , xN1 are generated under condition 1 and the N2 = N −N1

read counts xN1+1, . . . , xN are generated under condition 2. The test assumes that read counts
of condition 1 are distributed according to a negative binomial NB(x; µ1, r1) and read counts
in condition 2 according to NB(x; µ2, r2). The sum S1 =

∑N1
k=1 xk of N1 read counts drawn

from NB(x; µ1, r1) is distributed according to NB(S1; N1µ1, N1r1) (Bean 2001; Furman 2007).
Analogously, the sum S2 =

∑N
k=N1+1 xk of N2 read counts drawn from NB(x; µ2, r2) is dis-

tributed according to NB(S2; N2µ2, N2r2). The null hypothesis is that the mean µ1 in the first
condition is equal to the mean µ2 in the second condition: µ = µ1 = µ2. Using all N = N1 +N2

read counts xk, the mean µ is estimated by µ = 1
N

∑N
k=1 xk. Next, assuming µ1 = µ2 = µ, the
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values for r1 and r2 are estimated. Under the null hypothesis and with mutually independent read
counts the probability pS of observing the pair of sums (S1, S2) with N1 summands in S1 and N2

summands in S2 is:

pS(S1, S2) = NB(S1; N1µ,N1r1) NB(S2; N2µ,N2r2) . (S68)

Next we compute the probability of observing (S1, S2) or more extreme sum pairs (a, b) under
the condition that a+ b = S with N1 summands in a and N2 summands in b. Further we assume
that a ∼ NB(x; N1µ,N1r1) and that b ∼ NB(x; N2µ,N2r2). The probability of observing
(S1, S2) or more extreme sum pairs (a, b) is:

p ((S1, S2) � (a, b) | a+ b = S) =
p ((S1, S2) � (a, b), a+ b = S)

p(a+ b = S)
, (S69)

where (S1, S2) � (a, b) means that (a, b) is equal or more extreme than (S1, S2). If (S1, S2) �
(a, b)⇔ ps(a, b) ≤ ps(S1, S2) then the p-value can be calculated by:

p =

∑
a+b=S;ps(a,b)≤ps(S1,S2)

pS(a, b)∑
a+b=S

pS(a, b)
. (S70)

Multiple conditions: Generalized Linear Model. For multiple known conditions we follow
McCarthy et al. (2012) and fit a generalized linear model (GLM, Nelder and Wedderburn (1972))
for a negative binomial response using the logarithm as link function and the estimated dispersion
parameters.

The GLM allows specifying any design and test for the significance of covariates. Without
specifying a particular design, DEXUS will use a design that includes a covariate for each spec-
ified condition and compare it with a null hypothesis model that only includes an intercept term.
The p-value from this comparison is used to rank transcripts according to the evidence for differ-
ential expression.

S3.3.2 Data with Unknown Conditions: I/NI Call

The Bayesian framework allows defining an informative/non-informative (I/NI) call (Hochreiter
et al. 2006; Talloen et al. 2007, 2010; Clevert et al. 2011; Klambauer et al. 2012). An I/NI call
reduces the false discovery rate at detecting differentially expressed transcripts because only those
transcripts are called for which the evidence of being differentially expressed is high. DEXUS first
computes the I/NI value (an evidence value) for differential expression. Subsequently, transcripts
are called informative if the I/NI value is beyond a threshold.

In contrast to φi or ri, which capture noise variation, α captures variation arising from dif-
ferentially expressed transcripts. Therefore, the posterior α̂ of α indicates differential expression
in the data if at least two conditions have a probability larger than zero. First, we want to have
evidence that at least two conditions are present. The larger the posterior value of a condition, the
more read counts have this condition, the higher is the evidence that this condition was present for
at least one read count. The model may explain one true condition by two model conditions and
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differential expression would be falsely detected. Secondly, we want to have evidence that model
conditions are different. The more the means µi of conditions differ (the means of the associated
negative binomials), the higher is the evidence that these conditions are indeed different and the
transcript is differentially expressed. Thus, the evidence on differential expression (the I/NI value)
should consider two factors: (I) at least two non-zero posterior values for αi, where larger val-
ues have more evidence that the conditions were indeed present; (II) differences of the means µi,
where larger differences have more evidence that the conditions are indeed different.

We select the largest αi (the condition with largest probability), and assume without loss
of generality that this is the first condition (i = 1). Then we compare other conditions to the
first condition. Factor (II), the differences between means, is expressed by the log differences
|log (µi)− log (µ1)|. Factor (I), two large non-zero posterior values, is included by weighting
these differences by αi. Thus, the I/NI value is

I/NI(α,µ) =
n∑
i=1

αi

∣∣∣∣log

(
µi
µ1

)∣∣∣∣ (S71)

=
n∑
i=1

αi |log (µi)− log (µ1)| .

The I/NI value is the expected fold change of read counts relative to read counts of the most
prominent condition given a noise-free model (all read counts are equal to the mean of the accord-
ing condition). Another interpretation of the I/NI value is: “the information gain of the posterior
α̂ compared to the prior distribution p(α)”. The prior represents the null hypothesis that only
one condition is present and the transcript is not differentially expressed. Therefore, the I/NI call
measures the tendency to reject the null hypothesis based on the observed data.

The I/NI value can also be viewed as the distance between a multiple component model (dif-
ferential expression) and the its closest single component model (no differential expression). The
I/NI value is a distance measure between a model with parametersM1 = (α1

1, . . . , α
1
n, µ

1
1, . . . , µ

1
n)

and another model with M2 = (α2
1, . . . , α

2
n, µ

2
1, . . . , µ

2
n):

d(M1,M2) =
n∑
i=1

|α1
i − α2

i | | log
µ1i
µ2i
|. (S72)

In the DEXUS method, the I/NI value measures the distance between the selected multiple com-
ponent model with parameters M = (α1, . . . , αn, µ1, . . . , µn) to the closest single component
model with parameters M0 = (1, 0, . . . , 0, µ1, µ1, . . . , µ1):

d(M,M0) = |αi − 1| | log
µ1
µ1
|+

n∑
i=2

|αi − 0| | log
µi
µ1
| = I/NI(α,µ). (S73)

Note that other models than M0 lead to larger distances to M .

S3.4 Sensitivity Analysis of the Hyperparameter for the Dirichlet Prior

For investigating the sensitivity of the hyperparameter G, that we introduced in Eq. (S27), we ap-
plied DEXUS to simulated data sets with unknown conditions (see Section S4.3). These data sets
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were produced assuming three different library sizes (106,107, and 108), eight different settings
with respect to the unkown conditions (6/6, 12/12, 9/3, 18/6, 10/2, 20/4, 11/1, and 22/2). In
total we had 3 × 8 × 100 = 2, 400 data sets and we used five different settings for G, that is
G = 0.1, G = 0.5, G = 1, G = 5, and G = 10. We assess the average performance of DEXUS
for different hyperparameters G in terms of the area under ROC curve (AUCROC) and the area
under precision-recall curve (AUCPR). The AUCROC is determined by the ranking of the I/NI
values, therefore it measures implicitely how much the I/NI value ranking change if different val-
ues for the hyperparameterG are used. Figures S12, S13, and S14 report the performance in terms
of AUCROC and AUCPR for the eight different settings and the three library sizes. The figures
show that the performance (therefore the I/NI value ranking) is relatively insensitive to the setting
of the hyperparameterG. For data sets with few samples in one of the conditions, G > 1 performs
better with respect to AUCPR. The improvement results from the reduced pressure on the minor
condition towards zero condition weight — otherwise the condition would die out. Note, that in
these settings only highly unbalanced number of samples in the conditions are present. However
this is a quite unusual case in biological or medical studies. Only for very extreme cases, e.g. only
one sample in one of the conditions, the performance improvement over G = 1 is notable. For
data sets with the same number of samples in each condition, G < 1 performs better. However
the performance improvement compared to G = 1 is minor. In conclusion, G = 1 has quite good
performance for typical biological or medical studies.

Since the conditions and how many samples are in a condition are not known a priori, we
average the performance over the different settings (number of samples in a condition). Tables S1
and S2 show the average performance of the model for different hyperparameters G in terms of
the area under ROC curve (AUCROC) and the area under precision-recall curve (AUCPR). The
default value G = 1 is the best compromise for the different settings and gives for most library
sizes the best average performance. The tables show that the performance is not very sensitive
with respect to the value of G. A larger or smaller value of G than 1, leads for some settings to
an performance increase but for other settings to a decrease which average out. This averaging
out is also to be expected for real data sets, in which different settings are assumed to be present
simultaneously.

library size G = 0.1 G = 0.5 G = 1 G = 5 G = 10

106 0.74 ± 0.03 0.75 ± 0.02 0.75 ± 0.01 0.74 ± 0.02 0.73 ± 0.02

107 0.79 ± 0.05 0.80 ± 0.03 0.83 ± 0.02 0.77 ± 0.01 0.76 ± 0.01

108 0.89 ± 0.06 0.90 ± 0.03 0.91 ± 0.02 0.86 ± 0.02 0.85 ± 0.02

Table S1: The performance in terms of area under ROC curve (AUCROC) for three different
library sizes and different choices of the hyperparameter G. The displayed values are the means
over 800 data sets, that is 100 data sets for each of the eight different settings for the number of
replicates in the conditions.

Though G = 1 is our recommendation, we still offer rules to set G for users who want to find
better values of G:

If conditions with few samples should be detected, large values ofG, likeG = 5 orG = 10,
improve the AUCPR of DEXUS.
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library size G = 0.1 G = 0.5 G = 1 G = 5 G = 10

106 0.51 ± 0.08 0.54 ± 0.06 0.55 ± 0.05 0.56 ± 0.03 0.55 ± 0.02

107 0.62 ± 0.12 0.67 ± 0.09 0.70 ± 0.07 0.69 ± 0.03 0.68 ± 0.03

108 0.74 ± 0.15 0.80 ± 0.11 0.82 ± 0.08 0.81 ± 0.04 0.80 ± 0.03

Table S2: The performance in terms of area under precision-recall curve (AUCPR) for three dif-
ferent library sizes and different choices of the hyperparameter G. The displayed values are the
means over 800 data sets, that is 100 data sets for each of the eight different settings for the number
of replicates in the conditions.

For condition with equal number of samples, small G like G = 0.1 gives slightly better
results than G = 1.

If the number of samples in the conditions are unbalanced but not very extreme, values of
G around one (the default) supply good performance.
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Figure S12: The performance of DEXUS in terms of AUCROC and AUCPR for different values of
the hyperparameter G. The library size is 106. The panels show the results for different number of
replicates in the conditions displayed above the panel: 6/6, 12/12, 9/3, 18/6, 10/2, 20/4, 11/1,
and 22/2. The AUCROC and AUCPR are plotted against G values (x-axis). Each data point has
an error bar that represents the standard deviation of the performance on 100 data sets.
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Figure S13: The performance of DEXUS in terms of AUCROC and AUCPR for different values of
the hyperparameter G. The library size is 107. The panels show the results for different number of
replicates in the conditions displayed above the panel: 6/6, 12/12, 9/3, 18/6, 10/2, 20/4, 11/1,
and 22/2. The AUCROC and AUCPR are plotted against G values (x-axis). Each data point has
an error bar that represents the standard deviation of the performance on 100 data sets.
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Figure S14: The performance of DEXUS in terms of AUCROC and AUCPR for different values of
the hyperparameter G. The library size is 108. The panels show the results for different number of
replicates in the conditions displayed above the panel: 6/6, 12/12, 9/3, 18/6, 10/2, 20/4, 11/1,
and 22/2. The AUCROC and AUCPR are plotted against G values (x-axis). Each data point has
an error bar that represents the standard deviation of the performance on 100 data sets.
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S4 Experiments

S4.1 Evaluation Criteria for Simulated Data Sets

For simulated data sets with known ground truth, we formulate the detection of differential expres-
sion as a classification task. A method has to decide whether a gene or a transcript is differentially
expressed (positive prediction) or not (negative prediction). For simulated data we know which
genes are differentially expressed (the positives) and which are not (the negatives). Therefore,
we can determine true positives, false positives, true negatives, and false negatives. The methods
return a continuous value, like a p-value obtained from a test or the I/NI values with DEXUS,
together with a threshold for deciding whether the gene is differentially expressed or not. This
value allows to rank genes and to compute the receiver-operator characteristics (ROC), a standard
measure to evaluate classification results. The area under the ROC curve (AUCROC) is a well-
known classification performance criterion and is equivalent to a Mann-Whitney-Wilcoxon test of
ranks.

Usually the number of differentially expressed genes is much smaller than the number of non-
differentially expressed genes. For these unbalanced classes, i.e. one class is much larger then
the other, the area under the precision recall curve (AUCPR) is more appropriate as performance
criterion, because it is independent of the true negatives. We report both the AUCROC and the
AUCPR.

S4.2 RNA-Seq Data with Known Conditions

S4.2.1 Methods Compared

We compare the following methods (available as R packages) for differential expression in RNA-
Seq data:

DEXUS (our novel method using known conditions, see Section S3.3.1)

DSS 1.0.0 (Wu et al. 2013)

DESeq 1.8.1 (Anders and Huber 2010)

baySeq 1.10.0 (Hardcastle and Kelly 2010)

edgeR 2.6.0 (Robinson et al. 2010)

DEGseq 1.10.0 (Wang et al. 2010)

NOISeq 29-IV-2011 (Tarazona et al. 2011)

PoissonSeq (Li et al. 2012)

SAMseq samr 2.0 (Li and Tibshirani 2011)

QuasiSeq 1.0-2 (Lund et al. 2012)

NBPSeq 0.1.8 (Cumbie et al. 2011)
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TSPM version of 13th May 2011 (Auer and Doerge 2011)

tweeDEseq 1.4.1 Unpublished method from Bioconductor (Gentleman et al. 2004)

DESeq2 1.0.17 (Anders and Huber 2010)

We used the default settings of all methods. All methods supply a ranking criterion like a p-value.

S4.2.2 Simulated Data With Two Known Conditions

Data Simulation. We simulated datasets with 106, 107, or 108 reads per sample (the library
size). For each library size 2, 6 or 15 replicates per condition were simulated. For each of these
nine combinations we generated 100 datasets with 10,000 transcripts each. Under condition i the
reads for a transcript distributed according to NB(x; µi, ri). For the selection of the mean µi
and the size ri (ri = φ−1i with overdispersion φi) we sampled values from the from the “Mice
Strains” RNA-Seq dataset (Bottomly et al. 2011), where we used only one biological condition.
Following Wu et al. (2013), we sampled µi values from the median read counts of the transcripts.
The overdispersion φ tends to decrease with increasing mean read counts as shown in Fig. S15.
Therefore we fitted a regression line to overdispersions by least squares. After sampling the log
µi values, we calculated the corresponding log φi values according to the regression line, added
Gaussian noise (σ2 = 1) to the log φi values and transformed the overdispersion into the size
parameter ri = 1/φi. 30% of the genes were chosen to be differentially expressed. Differential
expression was expressed by adjusting the means of the negative binomials to obtain fold changes
of 0.5, 1 and 1.5 (randomly chosen) between these means.

Results. We first compared the methods on simulated data for two condition. Tabs. S3, S4, and
S5 report the results for a library size of 106, 107, and 108. DEXUS estimates the dispersion
parameter with comparable performance to other methods when the sample size is low. DEXUS
outperforms the other methods when the sample size is medium, i.e. six replicates, or large, i.e.
fifteen replicates.
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Figure S15: Scatterplots of overdispersion and median read counts of various datasets (see
Tab. S20 in Subsection S5.1). For each transcript the median count was computed and the overdis-
persion estimated by maximum likelihood.
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Libsize Method AUCROC AUCPR

106 DEXUS 0.765±0.0019 0.669±0.0025

106 DESeq 0.752±0.0022 0.687±0.0025

106 DESeq2 0.774±0.0056 0.693±0.0069

106 edgeR 0.753±0.0023 0.687±0.0026

106 baySeq 0.800±0.0017 0.700±0.0023

106 NOISeq 0.750±0.0021 0.677±0.0026

106 SAMseq 0.735±0.0024 0.572±0.0053

106 DSS 0.773±0.0021 0.695±0.0025

106 PoissonSeq 0.700±0.0024 0.597±0.0042

106 NBPSeq 0.777±0.0056 0.698±0.0074

106 QuasiSeq 0.713±0.0069 0.670±0.0075

106 TSPM 0.628±0.0096 0.515±0.0074

106 TweeDEseq 0.733±0.0062 0.649±0.0071

107 DEXUS 0.896±0.0014 0.839±0.0021

107 DESeq 0.882±0.0016 0.841±0.0020

107 DESeq2 0.887±0.0042 0.843±0.0055

107 edgeR 0.894±0.0015 0.853±0.0020

107 baySeq 0.896±0.0014 0.849±0.0020

107 NOISeq 0.851±0.0017 0.794±0.0021

107 SAMseq 0.836±0.0018 0.663±0.0043

107 DSS 0.897±0.0015 0.856±0.0019

107 PoissonSeq 0.821±0.0025 0.711±0.0056

107 NBPSeq 0.893±0.0043 0.845±0.0061

107 QuasiSeq 0.889±0.0045 0.852±0.0054

107 TSPM 0.783±0.0051 0.619±0.0087

107 TweeDEseq 0.839±0.0052 0.778±0.0060

108 DEXUS 0.961±0.0008 0.930±0.0014

108 DESeq 0.955±0.0009 0.934±0.0011

108 DESeq2 0.956±0.0025 0.935±0.0033

108 edgeR 0.962±0.0009 0.942±0.0011

108 baySeq 0.954±0.0010 0.933±0.0011

108 NOISeq 0.908±0.0011 0.860±0.0016

108 SAMseq 0.888±0.0012 0.705±0.0037

108 DSS 0.965±0.0008 0.945±0.0010

108 PoissonSeq 0.884±0.0018 0.787±0.0059

108 NBPSeq 0.960±0.0026 0.936±0.0037

108 QuasiSeq 0.959±0.0024 0.941±0.0030

108 TSPM 0.871±0.0041 0.686±0.0142

108 TweeDEseq 0.897±0.0045 0.847±0.0057

Table S3: Performance of methods for two known conditions with 2 replicates and a library size of
106, 107, and 108. The best methods with respect to AUCROC are DSS, baySeq, and DEXUS.
With respect to AUCPR DSS, baySeq and edgeR perform best.
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Libsize Method AUCROC AUCPR

106 DEXUS 0.865±0.0017 0.825±0.0019

106 DESeq 0.855±0.0018 0.828±0.0020

106 DESeq2 0.864±0.0045 0.831±0.0052

106 edgeR 0.856±0.0019 0.830±0.0020

106 baySeq 0.892±0.0013 0.845±0.0018

106 NOISeq 0.812±0.0020 0.783±0.0023

106 SAMseq 0.847±0.0019 0.812±0.0020

106 DSS 0.868±0.0016 0.835±0.0019

106 PoissonSeq 0.803±0.0023 0.723±0.0040

106 NBPSeq 0.864±0.0050 0.826±0.0059

106 QuasiSeq 0.834±0.0063 0.820±0.0060

106 TSPM 0.828±0.0061 0.782±0.0077

106 TweeDEseq 0.852±0.0048 0.810±0.0056

107 DEXUS 0.964±0.0008 0.949±0.0010

107 DESeq 0.958±0.0009 0.946±0.0010

107 DESeq2 0.956±0.0024 0.943±0.0028

107 edgeR 0.961±0.0010 0.949±0.0011

107 baySeq 0.957±0.0009 0.942±0.0011

107 NOISeq 0.918±0.0013 0.889±0.0015

107 SAMseq 0.948±0.0010 0.934±0.0011

107 DSS 0.961±0.0008 0.949±0.0009

107 PoissonSeq 0.900±0.0018 0.828±0.0049

107 NBPSeq 0.959±0.0028 0.941±0.0036

107 QuasiSeq 0.959±0.0024 0.946±0.0028

107 TSPM 0.953±0.0024 0.935±0.0030

107 TweeDEseq 0.938±0.0037 0.926±0.0035

108 DEXUS 0.993±0.0003 0.988±0.0004

108 DESeq 0.990±0.0004 0.986±0.0005

108 DESeq2 0.989±0.0013 0.985±0.0015

108 edgeR 0.992±0.0004 0.988±0.0005

108 baySeq 0.985±0.0007 0.981±0.0008

108 NOISeq 0.958±0.0007 0.934±0.0010

108 SAMseq 0.986±0.0005 0.980±0.0007

108 DSS 0.992±0.0004 0.988±0.0004

108 PoissonSeq 0.941±0.0013 0.881±0.0041

108 NBPSeq 0.991±0.0012 0.984±0.0016

108 QuasiSeq 0.989±0.0014 0.985±0.0017

108 TSPM 0.987±0.0014 0.981±0.0018

108 TweeDEseq 0.965±0.0032 0.965±0.0027

Table S4: Performance of methods for two known conditions with 6 replicates and a library size
of 106, 107, and 108. The best methods with respect to AUCROC are DEXUS and DSS. With
respect to AUCPR DEXUS, baySeq and DSS perform best.
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Libsize Method AUCROC AUCPR

106 DEXUS 0.928±0.0014 0.910±0.0014

106 DESeq 0.922±0.0015 0.910±0.0014

106 DESeq2 0.925±0.0038 0.909±0.0040

106 edgeR 0.921±0.0017 0.908±0.0018

106 baySeq 0.943±0.0011 0.919±0.0014

106 NOISeq 0.851±0.0020 0.840±0.0026

106 SAMseq 0.910±0.0015 0.902±0.0062

106 DSS 0.927±0.0014 0.912±0.0014

106 PoissonSeq 0.861±0.0027 0.800±0.0047

106 NBPSeq 0.922±0.0049 0.903±0.0056

106 QuasiSeq 0.910±0.0048 0.894±0.0045

106 TSPM 0.916±0.0046 0.900±0.0047

106 TweeDEseq 0.921±0.0038 0.902±0.0041

107 DEXUS 0.989±0.0004 0.985±0.0005

107 DESeq 0.986±0.0005 0.982±0.0006

107 DESeq2 0.984±0.0016 0.979±0.0018

107 edgeR 0.986±0.0008 0.982±0.0009

107 baySeq 0.982±0.0008 0.977±0.0010

107 NOISeq 0.954±0.0008 0.938±0.0009

107 SAMseq 0.981±0.0006 0.978±0.0048

107 DSS 0.987±0.0005 0.982±0.0006

107 PoissonSeq 0.942±0.0013 0.886±0.0041

107 NBPSeq 0.985±0.0019 0.979±0.0022

107 QuasiSeq 0.981±0.0023 0.970±0.0032

107 TSPM 0.985±0.0015 0.980±0.0018

107 TweeDEseq 0.976±0.0025 0.973±0.0024

108 DEXUS 0.999±0.0001 0.999±0.0001

108 DESeq 0.998±0.0002 0.997±0.0002

108 DESeq2 0.997±0.0006 0.996±0.0007

108 edgeR 0.998±0.0003 0.997±0.0004

108 baySeq 0.995±0.0006 0.994±0.0007

108 NOISeq 0.981±0.0004 0.967±0.0006

108 SAMseq 0.997±0.0002 0.996±0.0003

108 DSS 0.998±0.0002 0.998±0.0002

108 PoissonSeq 0.969±0.0008 0.927±0.0029

108 NBPSeq 0.998±0.0007 0.997±0.0009

108 QuasiSeq 0.996±0.0011 0.991±0.0020

108 TSPM 0.998±0.0005 0.996±0.0006

108 TweeDEseq 0.979±0.0025 0.983±0.0019

Table S5: Performance of methods for two known conditions with 15 replicates and a library size
of 106, 107, and 108. The best methods with respect to AUCROC are DEXUS, baySeq, and DSS.
With respect to AUCPR DEXUS and DSS perform best.



44 S4 Experiments

S4.2.3 Simulated Data With Multiple Known Conditions

Data Simulation. We simulated data for multi-class problems for three conditions with 2, 6
or 15 replicates each. The data was generated like for two known conditions as described in
Subsection S4.2.2. If a transcript was selected to be differentially expressed, one group or two
groups were given a log fold change of either 0.5, 1.0 or 1.5 (randomly chosen). We compared
DEXUS to the multi-class versions of edgeR, baySeq, and SAMSeq.

Results. We first compared the methods on simulated data for two condition. Tabs. S6, S7, and
S8 report the results for a library size of 106, 107, and 108. DEXUS outperforms the other methods
when the sample size is medium, i.e. six replicates, or large, i.e. fifteen replicates.

Libsize Method AUCROC AUCPR

106 DEXUS 0.830±0.0023 0.745±0.0034

106 edgeR 0.827±0.0025 0.755±0.0029

106 baySeq 0.833±0.0023 0.745±0.0042

106 DESeq 0.820±0.0024 0.753±0.0029

106 SAMseq 0.780±0.0026 0.678±0.0038

107 DEXUS 0.936±0.0013 0.896±0.0020

107 edgeR 0.931±0.0014 0.896±0.0020

107 baySeq 0.920±0.0016 0.874±0.0047

107 DESeq 0.921±0.0016 0.888±0.0021

107 SAMseq 0.862±0.0044 0.713±0.0249

108 DEXUS 0.979±0.0006 0.961±0.0009

108 edgeR 0.977±0.0007 0.962±0.0010

108 baySeq 0.965±0.0010 0.939±0.0040

108 DESeq 0.972±0.0008 0.957±0.0010

108 SAMseq 0.877±0.0012 0.668±0.0114

Table S6: Performance of methods for three known conditions with 2 replicates and a library size
of 106, 107, and 108. The best methods with respect to AUCROC are baySeq and DEXUS. With
respect to AUCPR edgeR and DEXUS perform best.
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Libsize Method AUCROC AUCPR

106 DEXUS 0.913±0.0015 0.882±0.0018

106 edgeR 0.907±0.0017 0.880±0.0019

106 baySeq 0.915±0.0015 0.874±0.0035

106 DESeq 0.905±0.0016 0.877±0.0019

106 SAMseq 0.890±0.0017 0.877±0.0170

107 DEXUS 0.982±0.0006 0.973±0.0008

107 edgeR 0.977±0.0009 0.969±0.0011

107 baySeq 0.969±0.0011 0.951±0.0039

107 DESeq 0.975±0.0008 0.966±0.0010

107 SAMseq 0.967±0.0010 0.957±0.0034

108 DEXUS 0.997±0.0002 0.995±0.0002

108 edgeR 0.996±0.0003 0.994±0.0004

108 baySeq 0.988±0.0007 0.976±0.0040

108 DESeq 0.995±0.0003 0.992±0.0004

108 SAMseq 0.992±0.0005 0.989±0.0006

Table S7: Performance of methods for there known conditions with 6 replicates and a library
size of 106, 107, and 108. The best methods with respect to AUCROC are baySeq, edgeR, and
DEXUS. With respect to AUCPR DEXUS performs best.

Libsize Method AUCROC AUCPR

106 DEXUS 0.958±0.0012 0.945±0.0013

106 edgeR 0.952±0.0015 0.939±0.0016

106 baySeq 0.956±0.0011 0.931±0.0041

106 DESeq 0.953±0.0013 0.941±0.0013

106 SAMseq 0.942±0.0013 0.931±0.0078

107 DEXUS 0.996±0.0003 0.993±0.0004

107 edgeR 0.992±0.0006 0.990±0.0006

107 baySeq 0.986±0.0008 0.973±0.0035

107 DESeq 0.993±0.0005 0.990±0.0005

107 SAMseq 0.990±0.0006 0.986±0.0007

108 DEXUS 1.000±0.0001 1.000±0.0001

108 edgeR 0.999±0.0002 0.999±0.0003

108 baySeq 0.994±0.0006 0.983±0.0043

108 DESeq 0.999±0.0001 0.999±0.0002

108 SAMseq 0.998±0.0002 0.998±0.0009

Table S8: Performance of methods for three known conditions with 15 replicates and a library size
of 106, 107, and 108. The best method with respect to both AUCROC and AUCPR is DEXUS.
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S4.2.4 Real World Data with Two Known Conditions

We compare the methods on real-world data, the “Mice Strains” data set, which has already
been used for benchmarking RNA-Seq methods. In Bottomly et al. (2011), two strains of mice,
C57BL/6J (B6) and DBA/2J (D2), were compared using both RNA-Seq and microarrays. The
dataset consists of 21 lanes from male mice (10 of the B6 strain and 11 of D2 strain), produced us-
ing an Illumina GAIIx sequencing machine. The dataset was provided by the ReCount repository
(Frazee et al. 2011) that is based on Ensembl 61 gene definitions. DEXUS found 157 genes that
were significant using the mentioned test for differentially expression after Bonferroni correction
at a significance level of 0.01. Of these 157 genes 97.5% were confirmed by at least one of the
eight other methods, 91% by at least two other methods, and 85% by at least three other methods.
8% were confirmed by all eight methods. To compare the result of DEXUS to the results of the
original publication (Bottomly et al. 2011), we used the authors’ read count data that is based on
an older version of the Ensembl gene definitions (Ensembl 59). DEXUS identified 258 genes as
differentially expressed. Of these 258 genes 245 were also identified in the original publication
and confirmed by both Affymetrix and Illumina microarrays. The gene sets extracted by DEXUS
are analyzed by the DAVID annotation tool (Huang et al. 2009b, a) for gene enrichment using gene
ontology (Ashburner et al. 2000) and the INTERPRO data base (Hunter et al. 2012). Significant
terms were “antigen processing and presentation” (p = 9.7e-6), “antigen processing an presentation
of peptide antigen” (p = 1.1e-5),“ Immunoglobulin/major histocompatibility complex, conserved
site” (p = 4.2e-4), and “Immunoglobulin-like” (p = 3.2e-4). This shows that many transcripts that
are differentially expressed between the two mice strains are related to the immune system.

S4.3 RNA-Seq Data with Unknown Conditions

The idea of DEXUS is to estimate the conditions and read counts belonging to them by a mixture
model. This can also be done by a mixture of Gaussians. We compare DEXUS which is a mixture
of negative binomials to a mixture of Gaussians to assess whether negative binomials are indeed
the appropriate mixture components to model RNA-Seq data. We select mclust 4.0.0 (Fraley
et al. 2012) as baseline method. It is used to model RNA-Seq data by a mixture of Gaussians.
For the baseline method gene ranking was performed according to DEXUS’ I/NI value.

S4.3.1 Methods compared

We compare the following methods for differential gene expression in RNA-Seq data with un-
known conditions:

DEXUS,

baseline method: mclust (Fraley et al. 2012; Fraley and Raftery 2002).

The baseline method is mixture of Gaussians clustering algorithm. We model the data with
one, two and three Gaussians. We use the DEXUS I/NI value (see Subsection S3.3) to rank the
transcripts according to the evidence of being differentially expressed. The values α, µ,and αik
are provided by the Gaussian mixture EM algorithm.
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In principle it is possible to test all possible partitions of the samples into two or more condi-
tions and then apply standard RNA-Seq methods. However this approach is not feasible because
the number of partitions increases combinatorial. The number of partitions of a set with N ele-
ments is given by the Bell number BN .

BN =
1

e

∞∑
k=0

kN

k!
(S74)

For multiple conditions, the number of data sets is the number of partions minus one BN − 1
(the set of all data is not considered). For N = 10 samples, the Bell number is B10 = 115, 975,
therefore a method has to run 115,974 data sets. For N = 20 samples, a method has to run
51,724,158,235,371 data sets.

S4.3.2 Simulated Data Sets with Unknown Conditions

Data Simulation. We simulated datasets analogously to data with known conditions (see Sub-
section S3.3.1), except that the conditions are withhold from the methods. Furthermore, the con-
ditions can have different number of replicates as expected for general study designs.

Results. Tab. S9, Tab. S10, and Tab. S11 show the results in terms of AUCROC and AUCPR for
DEXUS and mclust for library sizes 106, 107, and 108, respectively. In all experiments DEXUS
outperforms the baseline method. This is not surprising as modeling with a negative binomial is
supposed to perform better than modeling with a Gaussian distribution.

Performance at different I/NI thresholds Tab. S12, Tab. S13, and Tab. S14 show the results of
DEXUS in terms of different performance measures like sensitivity and specificity at different I/NI
thresholds and for library sizes 106, 107, and 108, respectively. Additional performance measures
are given in Section S6.

Performance for different fold change categories We investigated whether DEXUS has a dif-
ferent performance on differentially expressed genes belonging to different fold change categories.
Each data set in the simulated data consists of around 7,000 non differentially expressed genes,
around 1,000 genes with a log fold change of 0.5, around 1,000 genes with a log fold change of
1, and around 1,000 genes with a log fold change of 1.5. We assess the performance of DEXUS
in terms of specificity and sensitivity on a data sets of 8,000 genes (7,000 negatives and 1,000
positives), one data set for each fold change. The results for these different fold change categories
are displayed in Tables S15, S16, and S17 for library sizes of 106, 107, and 108, respectively.

For the different fold change categories, the set of negatives (the 7,000 non differentially ex-
pressed genes) is the same and the number of the false positives is the same (as the I/NI threshold
is the same), therefore also the specificity is the same. The sensitivity values increase with the
log fold change. The reason is that genes with larger log fold changes lead to higher I/NI values
(larger distances between the read count means), thus are easier to be detected. The lower the
number of samples of the smaller condition, the lower the sensitivity. The signal of the smaller
condition is more likely to be confounded with outliers. Table S shows that at a threshold of 0.05
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C1/C2 Method AUCROC AUCPR

6/6 DEXUS 0.772±0.0036 0.580±0.0073

6/6 baseline method 0.648±0.0042 0.478±0.0077

9/3 DEXUS 0.773±0.0034 0.553±0.0065

9/3 baseline method 0.768±0.0037 0.401±0.0058

10/2 DEXUS 0.764±0.0038 0.517±0.0068

10/2 baseline method 0.603±0.0036 0.357±0.0055

11/1 DEXUS 0.733±0.0038 0.451±0.0064

11/1 baseline method 0.522±0.0031 0.274±0.0039

12/12 DEXUS 0.758±0.0034 0.598±0.0058

12/12 baseline method 0.669±0.0035 0.515±0.0063

18/6 DEXUS 0.782±0.0032 0.603±0.0054

18/6 baseline method 0.645±0.0038 0.447±0.0061

20/4 DEXUS 0.764±0.0034 0.587±0.0059

20/4 baseline method 0.627±0.0036 0.409±0.0057

22/2 DEXUS 0.741±0.0034 0.519±0.0060

22/2 baseline method 0.591±0.0032 0.356±0.0042

Table S9: Results of DEXUS and the baseline method (mclust) for unknown conditions (two
conditions). “C1/C2” reports the number of samples for each condition. “Method” gives the name
of the method and AUCROC and AUCPR the according performances. The library size was 106

for all experiments. DEXUS consistently outperforms the baseline method.

C1/C2 Method AUCROC AUCPR

6/6 DEXUS 0.838±0.0035 0.745±0.0056

6/6 baseline method 0.728±0.0041 0.662±0.0070

9/3 DEXUS 0.843±0.0027 0.714±0.0060

9/3 baseline method 0.702±0.0039 0.568±0.0069

10/2 DEXUS 0.832±0.0028 0.663±0.0060

10/2 baseline method 0.673±0.0036 0.495±0.0056

11/1 DEXUS 0.792±0.0041 0.559±0.0070

11/1 baseline method 0.512±0.0029 0.314±0.0038

12/12 DEXUS 0.833±0.0026 0.755±0.0042

12/12 baseline method 0.764±0.0035 0.706±0.0068

18/6 DEXUS 0.851±0.0032 0.771±0.0054

18/6 baseline method 0.743±0.0036 0.632±0.0067

20/4 DEXUS 0.847±0.0034 0.745±0.0059

20/4 baseline method 0.719±0.0032 0.573±0.0062

22/2 DEXUS 0.817±0.0035 0.648±0.0060

22/2 baseline method 0.674±0.0035 0.484±0.0051

Table S10: Results of DEXUS and Gaussian mixtures (mclust) for unknown conditions (two
conditions). “C1/C2” reports the number of samples for each condition. “Method” gives the name
of the method and AUCROC and AUCPR the according performances. The library size was 107

for all experiments. DEXUS consistently outperforms the baseline method.
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C1/C2 Method AUCROC AUCPR

6/6 DEXUS 0.914±0.0025 0.874±0.0038

6/6 baseline method 0.834±0.0035 0.824±0.0045

9/3 DEXUS 0.921±0.0020 0.852±0.0054

9/3 baseline method 0.813±0.0035 0.762±0.0065

10/2 DEXUS 0.908±0.0025 0.791±0.0053

10/2 baseline method 0.785±0.0033 0.681±0.0062

11/1 DEXUS 0.862±0.0027 0.652±0.0060

11/1 baseline method 0.513±0.0026 0.328±0.0038

12/12 DEXUS 0.912±0.0023 0.880±0.0031

12/12 baseline method 0.863±0.0030 0.856±0.0037

18/6 DEXUS 0.931±0.0023 0.899±0.0036

18/6 baseline method 0.849±0.0031 0.816±0.0050

20/4 DEXUS 0.926±0.0024 0.872±0.0047

20/4 baseline method 0.828±0.0031 0.762±0.0051

22/2 DEXUS 0.897±0.0028 0.770±0.0055

22/2 baseline method 0.786±0.0032 0.654±0.0070

Table S11: Results of DEXUS and Gaussian mixtures (mclust) for unknown conditions (two
conditions). “C1/C2” reports the number of samples for each condition. “Method” gives the name
of the method and AUCROC and AUCPR the according performances. The library size was 108

for all experiments. DEXUS consistently outperforms the baseline method.

strong signals (log fold changes of 1.5) can still be reliably detected even if they appear in only a
few samples (“11/1” or “22/2”).
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I/NI threshold 0.025 0.05 0.1
C1/C2 specificity sensitivity specificity sensitivity specificity sensitivity
6/6 0.938 ± 0.003 0.327 ± 0.009 0.955 ± 0.003 0.310 ± 0.009 0.976 ± 0.002 0.278 ± 0.010
9/3 0.938 ± 0.003 0.362 ± 0.008 0.955 ± 0.002 0.340 ± 0.007 0.976 ± 0.002 0.276 ± 0.007
10/2 0.938 ± 0.003 0.362 ± 0.010 0.955 ± 0.002 0.327 ± 0.009 0.976 ± 0.002 0.193 ± 0.007
11/1 0.938 ± 0.003 0.319 ± 0.009 0.955 ± 0.002 0.219 ± 0.009 0.976 ± 0.002 0.045 ± 0.004
12/12 0.959 ± 0.002 0.281 ± 0.009 0.978 ± 0.002 0.255 ± 0.008 0.993 ± 0.001 0.222 ± 0.008
18/6 0.959 ± 0.002 0.332 ± 0.010 0.978 ± 0.002 0.298 ± 0.009 0.993 ± 0.001 0.233 ± 0.009
20/4 0.959 ± 0.002 0.337 ± 0.009 0.979 ± 0.002 0.285 ± 0.009 0.993 ± 0.001 0.152 ± 0.008
22/2 0.959 ± 0.002 0.295 ± 0.008 0.978 ± 0.002 0.170 ± 0.007 0.993 ± 0.001 0.015 ± 0.003
Mean 0.949 ± 0.011 0.327 ± 0.029 0.967 ± 0.012 0.275 ± 0.058 0.984 ± 0.009 0.177 ± 0.100

Table S12: The performance of DEXUS in terms of sensitivity and specificity at the detection
of differential expression with unknown conditions. The first row reports the different thresholds
that were used for the I/NI value. The first column “C1/C2” reports the number of replicates for
the first and second condition. The other columns report sensitivity and specificity of DEXUS at
different I/NI thresholds. The library size was 106 for all experiments.

I/NI threshold 0.025 0.05 0.1
C1/C2 specificity sensitivity specificity sensitivity specificity sensitivity
6/6 0.896 ± 0.004 0.550 ± 0.011 0.940 ± 0.003 0.517 ± 0.011 0.976 ± 0.002 0.465 ± 0.010
9/3 0.897 ± 0.004 0.600 ± 0.009 0.941 ± 0.003 0.557 ± 0.009 0.976 ± 0.002 0.438 ± 0.009
10/2 0.898 ± 0.004 0.597 ± 0.009 0.941 ± 0.003 0.509 ± 0.009 0.976 ± 0.002 0.269 ± 0.009
11/1 0.898 ± 0.004 0.516 ± 0.010 0.941 ± 0.003 0.303 ± 0.009 0.976 ± 0.002 0.036 ± 0.003
12/12 0.940 ± 0.003 0.516 ± 0.009 0.975 ± 0.002 0.470 ± 0.009 0.993 ± 0.001 0.424 ± 0.008
18/6 0.941 ± 0.003 0.590 ± 0.010 0.976 ± 0.002 0.532 ± 0.010 0.993 ± 0.001 0.417 ± 0.010
20/4 0.940 ± 0.003 0.590 ± 0.010 0.975 ± 0.002 0.479 ± 0.010 0.993 ± 0.001 0.243 ± 0.008
22/2 0.940 ± 0.003 0.497 ± 0.010 0.975 ± 0.002 0.262 ± 0.009 0.993 ± 0.001 0.011 ± 0.002
Mean 0.919 ± 0.023 0.557 ± 0.042 0.958 ± 0.018 0.454 ± 0.110 0.993 ± 0.005 0.171 ± 0.177

Table S13: The performance of DEXUS in terms of sensitivity and specificity at the detection
of differential expression with unknown conditions. The first row reports the different thresholds
that were used for the I/NI value. The first column “C1/C2” reports the number of replicates for
the first and second condition. The other columns report sensitivity and specificity of DEXUS at
different I/NI thresholds. The library size was 107 for all experiments.
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I/NI threshold 0.025 0.05 0.1
C1/C2 specificity sensitivity specificity sensitivity specificity sensitivity
6/6 0.893 ± 0.003 0.775 ± 0.009 0.951 ± 0.002 0.720 ± 0.009 0.985 ± 0.002 0.646 ± 0.009
9/3 0.893 ± 0.004 0.827 ± 0.006 0.951 ± 0.002 0.766 ± 0.007 0.985 ± 0.001 0.580 ± 0.008
10/2 0.893 ± 0.003 0.819 ± 0.008 0.950 ± 0.002 0.656 ± 0.009 0.985 ± 0.001 0.325 ± 0.009
11/1 0.893 ± 0.003 0.677 ± 0.009 0.951 ± 0.002 0.351 ± 0.008 0.985 ± 0.001 0.020 ± 0.003
12/12 0.945 ± 0.002 0.735 ± 0.008 0.982 ± 0.001 0.665 ± 0.008 0.996 ± 0.001 0.610 ± 0.009
18/6 0.945 ± 0.003 0.816 ± 0.008 0.982 ± 0.002 0.743 ± 0.009 0.996 ± 0.001 0.570 ± 0.011
20/4 0.945 ± 0.003 0.810 ± 0.008 0.982 ± 0.002 0.625 ± 0.009 0.996 ± 0.001 0.308 ± 0.009
22/2 0.946 ± 0.002 0.650 ± 0.009 0.982 ± 0.001 0.325 ± 0.008 0.996 ± 0.001 0.006 ± 0.002
Mean 0.919 ± 0.028 0.764 ± 0.069 0.966 ± 0.017 0.606 ± 0.172 0.991 ± 0.006 0.383 ± 0.261

Table S14: The performance of DEXUS in terms of sensitivity and specificity at the detection
of differential expression with unknown conditions. The first row reports the different thresholds
that were used for the I/NI value. The first column “C1/C2” reports the number of replicates for
the first and second condition. The other columns report sensitivity and specificity of DEXUS at
different I/NI thresholds. The library size was 108 for all experiments.

I/NI threshold 0.025 0.05 0.1

C1/C2 specificity sensitivity specificity sensitivity specificity sensitivity
6/6 0.94|0.94|0.94 0.10|0.28|0.45 0.95|0.95|0.95 0.08|0.27|0.45 0.98|0.98|0.98 0.04|0.24|0.43
9/3 0.94|0.94|0.94 0.13|0.32|0.48 0.95|0.95|0.95 0.09|0.30|0.47 0.98|0.98|0.98 0.03|0.22|0.45
10/2 0.94|0.94|0.94 0.13|0.32|0.47 0.95|0.95|0.95 0.08|0.29|0.47 0.98|0.98|0.98 0.03|0.08|0.38
11/1 0.94|0.94|0.94 0.10|0.28|0.43 0.95|0.95|0.95 0.06|0.12|0.38 0.98|0.98|0.98 0.03|0.04|0.06
12/12 0.96|0.96|0.96 0.07|0.27|0.44 0.98|0.98|0.98 0.04|0.24|0.42 0.99|0.99|0.99 0.01|0.20|0.40
18/6 0.96|0.96|0.96 0.10|0.32|0.49 0.98|0.98|0.98 0.06|0.29|0.47 0.99|0.99|0.99 0.01|0.20|0.43
20/4 0.96|0.96|0.96 0.10|0.33|0.49 0.98|0.98|0.98 0.03|0.27|0.47 0.99|0.99|0.99 0.01|0.03|0.37
22/2 0.96|0.96|0.96 0.06|0.29|0.45 0.98|0.98|0.98 0.03|0.07|0.37 0.99|0.99|0.99 0.01|0.01|0.02

Table S15: The performance of DEXUS in terms of sensitivity and specificity in detecting dif-
ferential expression with unknown conditions. The results are separately reported for the three
different fold change categories. The first column “C1/C2” contains the numbers of replicates for
the first and second condition. The other columns list sensitivity and specificity of DEXUS at
different I/NI thresholds as the average across 100 data sets. The first, second, and third value in
each cell corresponds to a log fold change of 0.5, 1, and 1.5, respectively. The library size was
106 for all experiments.
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I/NI threshold 0.025 0.05 0.1

C1/C2 specificity sensitivity specificity sensitivity specificity sensitivity
6/6 0.90|0.90|0.90 0.25|0.62|0.78 0.94|0.94|0.94 0.18|0.60|0.77 0.98|0.98|0.98 0.09|0.55|0.75
9/3 0.90|0.90|0.90 0.33|0.65|0.80 0.94|0.94|0.94 0.24|0.63|0.79 0.98|0.98|0.98 0.04|0.50|0.76
10/2 0.90|0.90|0.90 0.33|0.65|0.79 0.94|0.94|0.94 0.12|0.61|0.78 0.98|0.98|0.98 0.03|0.09|0.67
11/1 0.90|0.90|0.90 0.19|0.59|0.75 0.94|0.94|0.94 0.07|0.16|0.66 0.98|0.98|0.98 0.03|0.03|0.05
12/12 0.94|0.94|0.94 0.18|0.60|0.77 0.98|0.98|0.98 0.09|0.56|0.75 0.99|0.99|0.99 0.03|0.51|0.73
18/6 0.94|0.94|0.94 0.30|0.66|0.81 0.98|0.98|0.98 0.18|0.62|0.79 0.99|0.99|0.99 0.01|0.48|0.76
20/4 0.94|0.94|0.94 0.30|0.66|0.81 0.98|0.98|0.98 0.06|0.59|0.79 0.99|0.99|0.99 0.01|0.04|0.68
22/2 0.94|0.94|0.94 0.12|0.60|0.77 0.98|0.98|0.98 0.03|0.09|0.67 0.99|0.99|0.99 0.01|0.01|0.02

Table S16: The performance of DEXUS in terms of sensitivity and specificity in detecting dif-
ferential expression with unknown conditions. The results are separately reported for the three
different fold change categories. The first column “C1/C2” contains the numbers of replicates for
the first and second condition. The other columns list sensitivity and specificity of DEXUS at
different I/NI thresholds as the average across 100 data sets. The first, second, and third value in
each cell corresponds to a log fold change of 0.5, 1, and 1.5, respectively. The library size was
107 for all experiments.

I/NI threshold 0.025 0.05 0.1

C1/C2 specificity sensitivity specificity sensitivity specificity sensitivity
6/6 0.89|0.89|0.89 0.47|0.89|0.97 0.95|0.95|0.95 0.33|0.87|0.96 0.99|0.99|0.99 0.16|0.83|0.95
9/3 0.89|0.89|0.89 0.60|0.91|0.97 0.95|0.95|0.95 0.44|0.89|0.97 0.99|0.99|0.99 0.03|0.76|0.95
10/2 0.89|0.89|0.89 0.59|0.90|0.97 0.95|0.95|0.95 0.14|0.86|0.96 0.98|0.98|0.98 0.02|0.07|0.88
11/1 0.89|0.89|0.89 0.24|0.85|0.95 0.95|0.95|0.95 0.07|0.14|0.85 0.99|0.99|0.99 0.02|0.02|0.02
12/12 0.95|0.95|0.95 0.36|0.88|0.97 0.98|0.98|0.98 0.20|0.84|0.96 1.00|1.00|1.00 0.09|0.79|0.94
18/6 0.95|0.95|0.95 0.56|0.91|0.98 0.98|0.98|0.98 0.38|0.88|0.97 1.00|1.00|1.00 0.01|0.75|0.95
20/4 0.95|0.95|0.95 0.55|0.91|0.98 0.98|0.98|0.98 0.06|0.85|0.96 1.00|1.00|1.00 0.00|0.03|0.89
22/2 0.95|0.95|0.95 0.14|0.85|0.96 0.98|0.98|0.98 0.02|0.07|0.88 1.00|1.00|1.00 0.00|0.01|0.01

Table S17: The performance of DEXUS in terms of sensitivity and specificity in detecting dif-
ferential expression with unknown conditions. The results are separately reported for the three
different fold change categories. The first column “C1/C2” contains the numbers of replicates for
the first and second condition. The other columns list sensitivity and specificity of DEXUS at
different I/NI thresholds as the average across 100 data sets. The first, second, and third value in
each cell corresponds to a log fold change of 0.5, 1, and 1.5, respectively. The library size was
108 for all experiments.
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S4.3.3 The “Nigerian HapMap” data set

Pickrell et al. (2010) sequenced RNA from 69 Nigerian HapMap individuals to study expression
quantitative trait loci (eQTLs). The read count data was provided by the ReCount repository
(Frazee et al. 2011). As in previous experiments, DEXUS was applied to this data with its default
parameters and ranked genes according to the I/NI value. The read counts of top-ranked genes and
the conditions identified by DEXUS are visualized as a heatmap in Fig. S16.
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Figure S16: Heatmap of the normalized read counts of the twelve genes with the largest I/NI
values for the “Nigerian HapMap” data set. Colors range from white for low expression to blue
for high expression. The columns displays different HapMap individuals. The rows show the gene
symbols of the top-ranked genes. Red crosses indicate that these samples belong to the minor
condition. At the right hand side of the heatmap, each gene is annotated by the minimum (“>”),
the median of two conditions (“m1” and “m2”), and the maximum (“<”) read count.

Five out of the twelve top-ranked genes are located on the Y chromosome (RPS4Y1, CY-
orf15A, EIF1AY, TMSB4Y, RPS4Y2). For these genes the conditions that DEXUS identified are
related to the sex. For four of the twelve top-ranked genes at least one eQTL is known. For ZFP57
the eQTL is the single nucleotide polymorphism (SNP) rs1736924 with a minor allele frequency
(MAF) of 0.14 (Pickrell et al. 2010). CDH1 has 6 eQTLs, one of which is SNP rs7196495 with a
MAF of 0.22 (Zeller et al. 2010). CLLU1OS possesses the eQTL SNP rs12580153 with a MAF of
0.19 (Dimas et al. 2009). L1TD1 has 2 eQTLs, one of which is SNP rs12137088 with a MAF 0.30
(Veyrieras et al. 2008). Since the MAFs are large, it is plausible that the minor alleles are observed
in the HapMap data set and that they lead to differential expressions of the associated genes. The
conditions that were found by DEXUS correspond to the alleles of corresponding SNPs.

The HapMap samples are lymphoblastoid cells, therefore we confirmed that the genes detected
by DEXUS are indeed expressed in lymphoblastoid cell lines. The gene NLRP2, ranked 11th by
DEXUS, is expressed in lymphoblastoid cells but with large variability (Halbritter et al. 2011)
as shown in Figure S17. NLRP2 is expressed in the HapMap individuals but in some very low.
Schlattl et al. (2011) identified a copy number variable region that covers NLRP2 partially and
may be the cause of differential expression. Therefore, the conditions that DEXUS identified for
NLRP2 seem to be related to copy number states of the samples. Copy number states might also
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cause differential expression of MKRN3 that was ranked 12th by DEXUS. Pinto et al. (2007)
and Redon et al. (2006) identified a copy number variable region covering MKRN3. However,
the interpretation of MKRN3’s conditions is difficult since only the paternal copy of MKRN3 is
expressed.

We analyzed DEXUS’ I/NI value ranking of transcripts. Genes on the X chromosome were
ranked significantly higher than other genes (p = 3.0e-12) which can be explained by sex related
transcripts. An analog test for the Y chromosome was not significant, because too few genes
were expressed. However, as already mentioned, out of the twelve top-ranked genes, five are
located on the Y chromosome. At an I/NI threshold of 0.1, DEXUS called 366 differentially
expressed genes. Gene enrichment analysis showed that the called genes are associated with the
extracellular region. Significant GO terms were “extracellular space”, “extracellular region part”,
and “extracellular region” with p = 2.2e-5, p = 8.8e-5, and p = 0.01, respectively (p-values were
corrected for multiple testing by the Benjamini-Hochberg procedure). These GO terms are in
agreement with characteristics of lymphoblastoid cells. Tab. S18 shows all significant GO terms
of this data set.

Term Count p-value

GO:0005615 extracellular space 35 2e-5
GO:0044421 extracellular region part 41 9e-5
GO:0005529 sugar binding 16 0.001
GO:0042379 chemokine receptor binding 9 0.001
GO:0008009 chemokine activity 9 0.001
GO:0005125 cytokine activity 15 0.003
GO:0007267 cell-cell signaling 30 0.004
GO:0005886 plasma membrane 95 0.011
GO:0031982 vesicle 27 0.011
GO:0031988 membrane-bounded vesicle 24 0.012
GO:0044459 plasma membrane part 63 0.014
GO:0030246 carbohydrate binding 19 0.014
GO:0030054 cell junction 22 0.016
GO:0005576 extracellular region 59 0.016
GO:0031410 cytoplasmic vesicle 25 0.018
GO:0016023 cytoplasmic membrane-bounded vesicle 22 0.027
GO:0003002 regionalization 14 0.044
GO:0005865 striated muscle thin filament 4 0.046
GO:0008021 synaptic vesicle 7 0.049

Table S18: Significant GO terms of the differentially expressed genes of the “Nigerian HapMap”
data set. The first column presents the GO identifier and the short name of the GO term. The
second column the number of genes that belong to that GO term, and the last column shows the
p-values after Benjamini-Hochberg correction.

S4.3.4 The “European HapMap” data set

We analyzed the RNA-Seq data of 60 individuals from the HapMap cohort from Montgomery et al.
(2010) which were provided by the ReCount repository (Frazee et al. 2011). Again, DEXUS
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Figure S17: Expression values of gene NLRP2 in log10 RPM (reads per million mapped reads)
format as provided by the GeneProf data base (Halbritter et al. 2011). The data is taken from 113
public data sets. The gene NLRP2 is expressed and highly variable in lymphoblastoid cell lines.

was applied to these data with its default parameters and ranked genes according to the I/NI value.
The read counts of top-ranked genes and the identified conditions are visualized as a heatmap in
Fig. S18.

RPS4Y1 is the gene with the largest I/NI value, differentially expressed between males and
females, and located on the Y chromosome. The genes CYorf15A and TMSB4Y, ranked fourth
and fifth according to the I/NI value, are located on the Y chromosome, too. As in “Nigerian
HapMap” data set, ZFP57 was detected as being differentially expressed. Two of the twelve top-
ranked genes have eQTLs. CLLU1OS has as eQTL the SNP rs12580153 with a minor allele
frequency of 0.19 (Dimas et al. 2009). POU2F3 has as eQTL the SNP rs2847497 with a MAF
of 0.14 (Schadt et al. 2008). As in the “Nigerian HapMap” data set some top ranked genes, like
NLRP2 (rank 11, again), were differentially expressed due to variable copy numbers (Schlattl
et al. 2011). Again the conditions are associated with copy numbers. For the genes T, PRSS21,
and RASSF10 DEXUS identified two conditions the interpretation of which is yet to be found.
We could neither interpret the conditions by sex, nor allele, nor copy number state. DEXUS
hints at a new source of variability in gene expression. The second ranked gene T, the third
ranked gene PRSS21, and the twelfth ranked gene RASSF10 are expressed in B-lymphoblastoid
cells (Wu et al. 2009; The ENCODE Project Consortium 2012), the cell type of the HapMap
samples. The high expression variability of T and PRSS21 in the B-lymphoblastoid cell line
was already reported by the ENCODE Project (The ENCODE Project Consortium 2012). The
ENCODE Project expression values for the genes T, PRSS21, and RASSF10 are visualized in
Fig. S19, S20, and S21.

When analyzing the I/NI value ranking, we found that genes on the X chromosome are ranked
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Figure S18: Heatmap of the read counts of the twelve genes with the largest I/NI values for the
“European HapMap” data set. Colors range from white for low expression to blue for high expres-
sion. The columns displays different HapMap individuals. The rows show the genes symbols of
the top-ranked genes. Red crosses indicate that these samples belong to the minor condition. At
the right hand side of the heatmap, each gene is annotated by the minimum (“>”), the median of
two conditions (“m1” and “m2”), and the maximum (“<”) read count.

significantly higher (p = 8.0e-6, Wilcoxon test). The analogous test for the Y chromosome was not
significant as too few genes were expressed. However, three out of the twelve top-ranked genes
with the largest I/NI value are located on the Y chromosome.

At an I/NI threshold of 0.1, DEXUS called 680 differentially expressed genes. Gene en-
richment analysis showed that the called genes are associated with ion transport. Significant GO
terms were “ion transport”, “potassium ion transport”, and “plasma membrane part” with p =
0.04, p = 4.3e-03, and p = 0.027, respectively (p-values were corrected for multiple testing by the
Benjamini-Hochberg procedure). These GO terms are in agreement with characteristics of lym-
phoblastoid cells. Tab. S19 shows all significant GO terms of this data set.

S4.3.5 The “Primate Liver” data set

Blekhman et al. (2010) investigated the differences in alternative splicing in liver tissue between
humans, chimpanzees and rhesus macaques. For this purpose, they sequenced the RNA of three
male and three female liver samples from each species. They focused on the expression values
of exons that had reliably determined orthologs in all species. Read counts for exons were pro-
vided by the original publication which used gene models from Ensemble (Release 50). After
pooling technical replicates, DEXUS ranked genes according to the I/NI value using its default
parameters. The ten top-ranked genes are visualized in Fig. S22 which shows strong differential
expression between the species. For all these genes DEXUS determined one of the three species
as minor condition without having been provided with this information. Interestingly, out of the
ten top-ranked genes, six are human pseudogenes: AC010591.10, AC105383.3, AC093874.3-1,
AC105383.3, AL132855.4, and UOX. These genes are inactive in humans because of recent struc-
tural rearrangements (Balasubramanian et al. 2009). Since the rearrangements are recent, their
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Figure S19: Expression values of gene T in RPM (reads per million mapped reads) format as
provided by the GeneProf data base (Halbritter et al. 2011). The data is taken from 113 public
data sets. The gene T is expressed and highly variable in lymphoblastoid cell lines.

Figure S20: Expression values of PRSS21 in log10 RPM (reads per million mapped reads) format
as provided by the GeneProf data base (Halbritter et al. 2011). The data is taken from 113 public
data sets. The gene PRSS21 is expressed and highly variable in lymphoblastoid cell lines.
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Term Count p-value

GO:0005261 cation channel activity 28 0.001
GO:0006813 potassium ion transport 20 0.004
GO:0022838 substrate specific channel activity 31 0.005
GO:0022843 voltage-gated cation channel activity 17 0.005
GO:0005267 potassium channel activity 16 0.005
GO:0046873 metal ion transmembrane transporter activity 29 0.005
GO:0022803 passive transmembrane transporter activity 32 0.005
GO:0005244 voltage-gated ion channel activity 20 0.006
GO:0022832 voltage-gated channel activity 20 0.006
GO:0005216 ion channel activity 30 0.006
GO:0015267 channel activity 32 0.007
GO:0030955 potassium ion binding 16 0.008
GO:0031420 alkali metal ion binding 22 0.008
GO:0022836 gated channel activity 27 0.009
GO:0005249 voltage-gated potassium channel activity 13 0.011
GO:0044459 plasma membrane part 103 0.027
GO:0051254 positive regulation of RNA metabolic process 34 0.030
GO:0034702 ion channel complex 19 0.031
GO:0030001 metal ion transport 33 0.031
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 28 0.032
GO:0051173 positive regulation of nitrogen compound metabolic process 41 0.033
GO:0045941 positive regulation of transcription 38 0.033
GO:0031328 positive regulation of cellular biosynthetic process 43 0.034
GO:0015672 monovalent inorganic cation transport 27 0.034
GO:0009891 positive regulation of biosynthetic process 43 0.035
GO:0045893 positive regulation of transcription, DNA-dependent 34 0.036
GO:0006811 ion transport 48 0.042
GO:0010628 positive regulation of gene expression 39 0.043
GO:0034703 cation channel complex 15 0.046

Table S19: Significant GO terms of the differentially expressed genes of the “European HapMap”
data set. The first column presents the GO identifier and the short name of the GO term. The
second column the number of genes that belong to that GO term, and the last column shows the
p-values after Benjamini-Hochberg’s correction.

orthologs can reliably be identified in other primates. Differential expression is detected because
these orthologs are still transcribed in chimpanzees or in rhesus macaques.

Many of the ten top-ranked genes are associated with liver pathways. Differential expression
of these genes between species might have arisen from different diets. Examples of such genes are
the human pseudogene UOX that is required to catalyze the oxidation of uric acid to allantoin in
Macaca mulatta, ABP1 and GSTM5 which participate in degradation and detoxification pathways,
VNN3 which helps to recycle vitamin B5, and CHFR2 which is associated with lipoproteins.

Thresholding the I/NI call at 0.1, DEXUS called 3384 genes (16% of all genes) as differen-
tially expressed. A gene set enrichment analysis found GO-Terms “intrinsic to plasma membrane”
(p = 7.9e-7) and “integral to plasma membrane”(p = 4.0e-6) to be significant. Thus, genes that en-
code membrane proteins seem to be more often differentially expressed between species than
other genes. Interestingly also “response to extracellular stimulus”, “response to nutrient”, and
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Figure S21: Expression values of gene RASSF10 in RPM (reads per million mapped reads) format
as provided by the GeneProf data base (Halbritter et al. 2011). The data is taken from 113 public
data sets. The gene T is expressed and highly variable in lymphoblastoid cell lines.

“response to nutrient levels” were significant (all p-values below 7.6e-5), which supports the hy-
pothesis that some genes are differentially expressed due to the different diets of the species. All
p-values were corrected by the Benjamini-Hochberg procedure.

S4.3.6 The “Maize Leafs” data set

Li et al. (2010) studied the developmental dynamics of the maize transcriptome using RNA-Seq
data from different locations of maize plant leafs. For each location two biological replicates were
sequenced with Illumina’s Genome Analyzer II. The reads were mapped to the TE-masked Zea
maize ZmB73 reference genome version 2 (AGPv2), release 5a using the GSNAP splicing short
read mapper (Wu and Nacu 2010). We counted the overlaps between mapped reads and the Zea
maize gene definitions from the Ensemble Plants database (Release 14). Reads that have multiple
possible alignments or that overlap with more than one gene are discarded. DEXUS was applied
to this data with its default parameters.

Fig. S23 shows the genes with the largest I/NI value and the conditions that were identified
by DEXUS. DEXUS found differentially expressed genes between different tissues, therefore
distinguished them without having been provided with any information on the tissue type. DEXUS
almost always assigned the two replicates to the same condition without knowing replicates or
tissue types. Thus, DEXUS assigns conditions very reliable.

Eight of the ten top ranked genes were also measured by microarrays across different tissues
of Zea mays (Sekhon et al. 2011). In this microarray experiment all eight genes show an absolute
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Figure S22: Heatmap of the normalized read counts of the ten genes with the largest I/NI values
for the “Primate Liver” data set. Colors range from white for low expression to blue for high
expression. The columns give female and male individuals from the three species human Homo
sapiens (HS), chimpanzee Pan troglodytes (PT), and rhesus macaques Macaca mulatta (MM).
The rows display the gene symbols of the top-ranked genes. Red crosses mark samples that were
assigned to the minor condition. At the right hand side of the heatmap, each gene is annotated
by the minimum (“>”), the median of two conditions (“m1” and “m2”), and the maximum (“<”)
read count.

log fold change of at least 1 between base and tip. Six of these eight genes show an absolute log
fold change greater than 4.

The two remaining genes, GRMZM2G331518 and AC213612.3_FG001, were not annotated
on the microarray. The function of the top ranked gene GRMZM2G331518 is not known. How-
ever, the associated peptide is similar to the defensin-like protein 91 of Arabidopsis thaliana that
plays a role in immune response. The gene AC213612.3_FG001 was ranked ninth. It is a glycine-
rich cell wall structural protein which hints at the fact that cell walls at different locations have
different structure.

At a threshold of 0.1 for the I/NI call, DEXUS called 15,756 differentially expressed genes.
Gene set enrichment analysis using the R package goseq (Young et al. 2010) led to the signifi-
cant GO terms “chloroplast”(p = 1.8e-92), and “plasma membrane” (p = 1.3e-34). Further the GO
terms “cytosolic ribosome” (p = 9.8e-32), “chloroplast thylakoid membrane” (p = 5.4e-31), and
“chloroplast stroma” (p = 1.8e-30) were significant. All p-values were corrected by the Benjamini-
Hochberg procedure. It is plausible that different locations of the maize plant leaf are different with
respect to chloroplasts. Moreover the GO term “cell wall” was highly significant (p = 3.9e-18)
which supports the above mentioned hypothesis that the cell walls differ at the different locations
of the plant leaf.



S4 Experiments 61

−
1c

m

−
1c

m

ba
se

ba
se

+
4c

m

+
4c

m tip tip bs bs

m
es

o

m
es

o

GRMZM2G136106

AC213612.3_FG001

GRMZM2G420001

AC208110.2_FG007

GRMZM2G062396

GRMZM2G016004

GRMZM2G142891

GRMZM2G481194

GRMZM5G898755

GRMZM2G331518

0

0

0

0

0

0

0

0

0

0
>

1.6 

0.0 

5808

0.0 

1.8 

1711

2551

0.0 

0.7 

0.0 
m1

343

131

2.1

61 

65 

0.0

0.8

598

42 

936
m2

 1340

  226

15309

  352

 1455

12089

17336

 1306

 2736

 1650
<

Figure S23: Heatmap of the normalized read counts of the ten genes with the largest DEXUS I/NI
values for the “Maize Leafs” data set. Colors range from white for low expression to blue for high
expression. The columns show samples from different locations of the maize plant leaf. The rows
display the gene symbols of the top-ranked genes. Red crosses indicate that the according samples
belong to the minor condition. At the right hand side of the heatmap, each gene is annotated by the
minimum (“>”), the median of two conditions (“m1” and “m2”), and the maximum (“<”) read
count.

S4.4 RNA-Seq Data with Subconditions

We demonstrate that DEXUS is capable of detecting subconditions in data sets with known major
conditions, which are typically the study conditions. Either (a) the higher level conditions are given
or (b) the hierarchy of the conditions is unknown. In both cases we can explain the hierarchy by
following model:

p(x) =

l∑
j=1

βj

kj∑
i=1

αij p(x | C = j,Dj = i) with (S75)

p(x | C = j,Dj = i) = NB(x;µij , rij) ,

where βj = p(C = j) with
∑l

j=1 βj = 1 are the probabilities for the higher level condition j,
C is the random variable for the higher level conditions, Dj is the random variable for the lower
level conditions for higher level condition j, and αij = p(Dj = i|C = j) with

∑kj
i=1 αij = 1 is

the probability to observe a lower level condition i given the higher level condition j. We obtain
the mixture of negative binomials for condition j:

kj∑
i=1

αij p(x | C = j,Dj = i) =

kj∑
i=1

p(Dj = i | C = j) p(x | C = j,Dj = i) (S76)

=

kj∑
i=1

p(x,Dj = i | C = j) = p(x | C = j) .

We define the probabilities for the lower level conditions

πij = αij βj = p(Dj = i | C = j) p(C = j) = p(Dj = i, C = j) and αij =
πij
βj

. (S77)
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Thus,

βj = βj

kj∑
i=1

αij =

kj∑
i=1

αij βj =

kj∑
i=1

πij (S78)

and
∑l

j=1

∑jk
i=1 πij = 1. We have as full model using the πij :

p(x) =

l,kj∑
j=1,i=1

πij p(x | C = j,Dj = i) , (S79)

which is just a mixture of negative binomials with index set {(i, j)}.
The posterior of a condition j after observing read count x is given via the Bayes formula by

p(C = j | x) =
p(x | C = j) p(C = j)

p(x)
(S80)

Using this model we first consider case (a), in which the higher level conditions are given. For
each read count xk, its higher level condition ι is known:

p(C = j | xk) =

{
1 if j = ι

0 otherwise
, (S81)

and, therefore, the βj can be approximated:

βj = p(C = j) =
∑
x

p(x) p(C = j | x) = Ex (p(C = j | x)) (S82)

≈ 1

N

N∑
k=1

p(C = j | xk)

To estimate the αij , we perform model selection on the mixture of negative binomials of
Eq. (S76) using only the xk that belong to condition j. If we do model selection for each higher
level condition j then all parameters of the hierarchical model are known. We just apply our
standard mixture of negative binomials model to each of the higher level conditions j.

Next we consider case (b), in which the higher level conditions are not kown. DEXUS is
applied to the full data set using the mixture of negative binomials model in Eq. (S79). Model
selection supplies the θs = πij , such that we do not know the index j of the πij . To identify j
and θs, which belong to the same higher level condition j, the lower level conditions s can be
joined by agglomerative clustering. In such a way we obtain a hierarchy of the conditions. The
variable βj is obtained by summing up the θs which belong to higher level condition j, that are
the θs = πij : βj =

∑kj
i=1 πij . Then the αij are obtained by αij =

πij
βj

. This approach is just
our standard mixture of negative binomials model applied to all data followed by a agglomerative
clustering to obtain a hierarchy of conditions.

In our experiments, in which the higher level conditions were known, both approaches led to
similar results, as we show in Figure S24. This figure shows using four genes of the “Primate
Liver” data set as exemplars for a hierarchy of conditions (or groups with subgroups of samples).



S4 Experiments 63

H
S

 m
a
le

 1

P
T

 f
e
m

a
le

 1

P
T

 f
e
m

a
le

 3

P
T

 m
a
le

 1

P
T

 m
a
le

 2

P
T

 m
a
le

 3

H
S

 f
e
m

a
le

 1

H
S

 f
e
m

a
le

 2

H
S

 f
e
m

a
le

 3

H
S

 m
a
le

 2

H
S

 m
a
le

 3

P
T

 f
e
m

a
le

 2

M
M

 f
e
m

a
le

 1

M
M

 f
e
m

a
le

 2

M
M

 f
e
m

a
le

 3

M
M

 m
a
le

 1

M
M

 m
a
le

 2

M
M

 m
a
le

 3

ACSM1 0

>

1.1

m1

13

m2

365

m3

676

<

H
S

 f
e
m

a
le

 1

H
S

 f
e
m

a
le

 2

H
S

 f
e
m

a
le

 3

H
S

 m
a
le

 1

H
S

 m
a
le

 2

H
S

 m
a
le

 3

P
T

 f
e
m

a
le

 1

P
T

 f
e
m

a
le

 2

P
T

 f
e
m

a
le

 3

P
T

 m
a
le

 1

P
T

 m
a
le

 2

P
T

 m
a
le

 3

M
M

 f
e
m

a
le

 1

M
M

 f
e
m

a
le

 2

M
M

 f
e
m

a
le

 3

M
M

 m
a
le

 1

M
M

 m
a
le

 2

M
M

 m
a
le

 3

PSKH2 0

>

0.0

m1

35

m2

13

m3

44

<

H
S

 f
e

m
a

le
 1

H
S

 m
a

le
 2

H
S

 m
a

le
 3

P
T

 f
e

m
a

le
 1

P
T

 f
e

m
a

le
 2

P
T

 f
e

m
a

le
 3

P
T

 m
a

le
 1

P
T

 m
a

le
 2

P
T

 m
a

le
 3

H
S

 f
e

m
a

le
 2

H
S

 f
e

m
a

le
 3

H
S

 m
a

le
 1

M
M

 f
e

m
a

le
 1

M
M

 f
e

m
a

le
 2

M
M

 f
e

m
a

le
 3

M
M

 m
a

le
 1

M
M

 m
a

le
 2

M
M

 m
a

le
 3

ABP1 0

>

0.8

m1

51

m2

15091

m3

31056

<

H
S

 f
e
m

a
le

 1

H
S

 f
e
m

a
le

 2

H
S

 f
e
m

a
le

 3

H
S

 m
a
le

 1

H
S

 m
a
le

 2

H
S

 m
a
le

 3

P
T

 f
e
m

a
le

 1

P
T

 f
e
m

a
le

 3

P
T

 m
a
le

 2

P
T

 f
e
m

a
le

 2

P
T

 m
a
le

 1

P
T

 m
a
le

 3

M
M

 f
e
m

a
le

 1

M
M

 f
e
m

a
le

 2

M
M

 f
e
m

a
le

 3

M
M

 m
a
le

 1

M
M

 m
a
le

 2

M
M

 m
a
le

 3

TRPM5 0

>

0.0

m1

5.0

m2

524

m3

948

<

Figure S24: Heatmap of the normalized read counts of four exemplar genes of the “Primate Liver”
data set that contain subconditions. Colors range from white for low expression to blue for high
expression. Different individuals are denoted along the x-axis, while genes are denoted by their
gene symbols along the y-axis. Red crosses indicate that the according samples belong to the
minor condition. Red diamonds indicate that the according samples belong to the minor subcon-
dition. At the right hand side of the heatmap, each gene is annotated by the minimum (“>”), the
median of three conditions (“m1”, “m2”, and “m3”), and the maximum (“<”) read count. The
three conditions found in both cases if the high level conditions are unknown and if the high level
conditions are known. In the former case, a DEXUS model with multiple unknown conditions
finds the three conditions and then two of them are merged by agglomerative clustering to a high
level condition. In the latter case DEXUS is applied to data from one high level condtion and then
finds the subconditions.
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S5 Additional Information

S5.1 Data set overview

Tab. S20 gives an overview over the data sets used in the manuscript and this supplement. Except
for the “Primate Liver” data set, all count matrices were downloaded from the ReCount (Frazee
et al. 2011) repository. The count matrix for the “Primate Liver” data was taken from GEO (Ac-
cession number GSE17274). The raw counts were normalized using UpperQuartile normalization.

Name Reference Organism S R Counts C
Primate Liver Blekhman et al. (2010) H.s./M.m./P.T. 18 2 Pub. U
European HapMap Montgomery et al. (2010) H. sapiens 60 1 ReCount U
Nigerian HapMap Pickrell et al. (2010) H. sapiens 69 1 ReCount U
Worm Hillier et al. (2009) C. elegans 46 – ReCount U
Yeast Nagalakshmi et al. (2008) S. cervisiae 4 1 ReCount U
Mice Strains Bottomly et al. (2011) M. musculus 21 1 ReCount K
Maize Leafs Li and Tibshirani (2011) Z. mays 12 2 Mapped U

Table S20: Overview of the data sets used in the manuscript. “Name” gives the name used for
the data set in the manuscript, “Reference” lists the according publications, “Organism” gives the
organism from which the RNA-Seq data was obtained (“H.s./M.m./P.T.” means Homo sapiens/Pan
troglodytes/Macaca mulatta which is human, chimpanzee, and rhesus macaques), “S” reports the
number of samples, “R” gives the number of replicates for each condition, “Counts” reports the
way the read counts are obtained (“Pub.” means from the publication, “ReCount” means the
mapped reads are counted per transcript, “Mapped” we preprocessed the data ourselves (read
mapping and counting), the column “C” lists whether the conditions were known (K) or unknown
(U).

S5.2 Alternative Way to Derive the Update Rule for Mixture Weights

The update rule Eq. (S57) can be obtained in an alternative way. The Dirichlet distribution is
conjugate to the multinomial distribution, that is the posterior p(α | {α1, . . . ,αk, . . . ,αN}) is
a Dirichlet distribution as is the prior p(α) with αk = p(α | xk). The Dirichlet prior p(α) =
D(α;γ) with parameters γ leads to the conjugate posterior p(α | {α1, . . . ,αk, . . . ,αN}) with
parameters

γ̂ = γ +
N∑
k=1

αk = γ + N α , (S83)

where we used Eq. (S38). We obtain update rule Eq. (S57) from Eq. (S83) component-wise by
first replacing the unknown values αik by their estimates α̃ik and then computing the posterior’s
mode because we search for the maximum posterior.
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S5.3 Posteriors in Our Framework

In our Bayesian framework, we introduced two different posterior distributions: (i) in Eq. (S37)
the posterior αik = p(i | xk,α,µ, r) of the data xk arising from the i-th condition with prior
αi = p(i) — this posterior is defined for fixed model parameters (α,µ, r); (ii) in Eq. (S20)
the parameter posterior p(α,µ, r | x) with priors p(α), p(µ), and p(r) — this posterior is the
objective that we maximize during model selection. In previous subsection we introduced another
posterior, the posterior p(α | {α1, . . . ,αk, . . . ,αN}) used in Eq. (S83) with prior p(α). In
contrast to (ii) this posterior is not the posterior for the full mixture of negative binomials model
but only for the multinomial distribution given byα, where the posteriors αik = p(i | xk,α,µ, r)
from (i) serve as data.

S5.4 Maximum A Posterior for the Size Parameter of a Negative Binomial

The maximum likelihood solution rML Eq. (S17) for the negative binomial tends to overestimate
the true size parameter r (Piegorsch 1990). Therefore we introduce a prior p(r) on r, which prefers
small r-values. An appropriate prior distribution is the exponential distribution p(r) = EXP(r) =
ηe−ηr.

Using a Bayesian approach, we obtain the posterior p(r | x) for a data point x as the nor-
malized product between the likelihood p(x | r) and the prior p(r). We want to maximize the
posterior

p(r | x) =
p(x | r) p(r)∫
p(x | r) p(r) dr

. (S84)

The logarithm of the posterior is

log p(r | x) = log p(x | r) + log p(r) − log(c(x)) , (S85)

where c(x) is a function of x. Using the negative binomial distribution

p(x | r) =
N∏
k=1

Γ(xk + r)

Γ(xk + 1)Γ(r)

(
µ

µ+ r

)xk ( r

µ+ r

)r
(S86)

and the exponential prior EXP(r) = ηe−ηr on r, we obtain

log p(r | x) =
N∑
k=1

[
log (Γ(xk + r)) − log (Γ(xk + 1)) − log (Γ(r)) + r log

(
r

µ+ r

)
+ xk log

(
µ

µ+ r

)]
+ log(η) − η r − log(c(x)) . (S87)

In order to maximize the posterior, we set the derivative with respect to r to zero:

∂

∂r
log(p(r | x)) =

N∑
k=1

ψ(xk + r) − N ψ(r) + N log

(
r

µ+ r

)
− η = 0 , (S88)
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where ψ is the digamma function. We call the solution of the above equation “maximum a pos-
terior estimator” rMAP for the size parameter of the negative binomial distribution. Note that this
is identical to the maximum-likelihood solution Eq. (S17) without prior except for the additional
term −η. η is the parameter of the exponential prior.

Note the similarity of Eq. (S88) for a single negative binomial distribution to Eq. (S49) for
the whole mixture model. The difference is that, for the whole mixture model, each data point is
weighted by its contribution to component i, that is, α̃ik.

S5.5 Summary of the parameters and input values of DEXUS

S5.5.1 Unknown Conditions

Input values and parameters:

X The input matrix of read counts. Rows are assumed to be genes and columns samples. An
entry is the read count of sample k in gene g.

n Number of conditions. For further information see Subsection S3.1. Default setting: n = 2.

αINIT The initial values for αi. For further information see Subsection S3.2.4. Default setting:
αINIT
i = 1/n.

normalization We implemented “RLE” (relative log expression) that is used by DESeq (Anders and
Huber 2010) and “UpperQuartile” normalization (Bullard et al. 2010). Default setting:
normalization = RLE .

kmeansIter The number of iterations of the kmeans algorithm for initializing. For further information
see Subsection S3.2.4. Default setting: kmeansIter = 10.

cyc The number of cycles of the EM algorithm. Convergence is usually reached after 5 to 10
cycles. For further information see Subsection S3.2.1. Default setting: cyc = 20.

Hyperparameters:

G The weight of the prior of α. The parameter of the Dirichlet distribution is set to γ =
(1 +G, 1, ..., 1). For further information see Subsection S3.2.1. Default setting: G = 1.

θ The hyperparameter that governs the setting of the regularization parameter η on the size
parameter r. For further information see Subsection S3.1.2 and S3.2.5. Default setting:
θ = 2.5.

rmax The upper bound for the size parameter r of the negative binomial distribution. Corresponds
to a lower bound of 1/rmax for the overdispersion. Default setting: rmax = 13.0.

µmin The minimal value for µi that is the mean parameter of the negative binomial distribution
For further information see Subsection S3.3. Default setting: µmin = 0.5.
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S5.5.2 Known Conditions

Input values and parameters:

X: The input matrix of read counts. Rows are assumed to be genes and columns samples. An
entry is the read count of sample k in gene g.

labels: A vector containing the condition for each sample. Must be the same length as the number
of rows ofX . For further information see Subsection S3.3.1.

normalization: We implemented “RLE” (relative log expression) that is used by DESeq (Anders and
Huber 2010) and “UpperQuartile” normalization (Bullard et al. 2010). Default setting:
normalization = RLE .

Hyperparameters:

θ The hyperparameter that governs the setting of the regularization parameter η on the size
parameter r. For further information see Subsection S3.1.2 and S3.2.5. Default setting:
θ = 2.5.

rmax The upper bound for the size parameter r of the negative binomial distribution. Corresponds
to a lower bound of 1/rmax for the overdispersion. Default setting: rmax = 13.0.

µmin The minimal value for µi that is the mean parameter of the negative binomial distribution
For further information see Subsection S3.3. Default setting: minMu = 0.5.

S5.6 Software Details of DEXUS and Experiments

In case of two known conditions we use the function nbinomTestForMatrices of the R
package DESeq.

To detect differential expression for multiple known conditions, DEXUS fits a generalized
linear model with the R package statmod.

The Gaussian clustering method mclust is available as package for the R . We used the most
recent stable version mclust 4.0 of the implementations as provided by the original authors.

For initialization of the EM algorithms the k-means clustering algorithm as implemented
in kmeans of the R base package is used.

We calculated the AUCROC with the function of the R package ROCR (Sing et al. 2005)
and the AUCPR with the algorithm suggested by Davis and Goadrich (2006).

A function to calculate the maximum a posterior estimator rMAP for the size parameter
of a negative binomial is efficiently implemented in the function getRNBbisection of the
DEXUS software package.
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S6 Performance Tables

I/NI threshold 0.025
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.64 0.36 0.33 0.43 0.78 0.94 0.33 0.63
9/3 0.67 0.33 0.36 0.47 0.79 0.94 0.36 0.65
10/2 0.66 0.34 0.36 0.47 0.79 0.94 0.36 0.65
11/1 0.63 0.37 0.32 0.42 0.78 0.94 0.32 0.63
12/12 0.72 0.28 0.28 0.40 0.77 0.96 0.28 0.62
18/6 0.75 0.25 0.33 0.46 0.79 0.96 0.33 0.65
20/4 0.76 0.24 0.34 0.47 0.79 0.96 0.34 0.65
22/2 0.73 0.27 0.30 0.42 0.78 0.96 0.30 0.63
Mean 0.70 0.30 0.33 0.44 0.79 0.95 0.33 0.64

I/NI threshold 0.05
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.70 0.30 0.31 0.43 0.79 0.96 0.31 0.63
9/3 0.72 0.28 0.34 0.46 0.80 0.96 0.34 0.65
10/2 0.71 0.29 0.33 0.45 0.80 0.96 0.33 0.64
11/1 0.62 0.38 0.22 0.32 0.77 0.96 0.22 0.59
12/12 0.82 0.18 0.25 0.39 0.78 0.98 0.25 0.62
18/6 0.84 0.16 0.30 0.44 0.79 0.98 0.30 0.64
20/4 0.83 0.17 0.29 0.42 0.79 0.98 0.29 0.63
22/2 0.75 0.25 0.17 0.28 0.76 0.98 0.17 0.57
Mean 0.75 0.25 0.28 0.40 0.78 0.97 0.28 0.62

I/NI threshold 0.1
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.80 0.20 0.28 0.41 0.80 0.98 0.28 0.63
9/3 0.80 0.20 0.28 0.41 0.80 0.98 0.28 0.63
10/2 0.73 0.27 0.19 0.31 0.78 0.98 0.19 0.58
11/1 0.39 0.61 0.05 0.08 0.74 0.98 0.05 0.51
12/12 0.92 0.08 0.22 0.36 0.78 0.99 0.22 0.61
18/6 0.92 0.08 0.23 0.37 0.79 0.99 0.23 0.61
20/4 0.89 0.11 0.15 0.26 0.76 0.99 0.15 0.57
22/2 0.43 0.57 0.01 0.03 0.73 0.99 0.01 0.50
Mean 0.73 0.27 0.18 0.28 0.77 0.98 0.18 0.58

I/NI threshold 0.15
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.87 0.13 0.25 0.39 0.80 0.99 0.25 0.62
9/3 0.82 0.18 0.18 0.29 0.78 0.99 0.18 0.58
10/2 0.55 0.45 0.05 0.08 0.75 0.99 0.05 0.52
11/1 0.36 0.64 0.02 0.04 0.75 0.99 0.02 0.50
12/12 0.96 0.04 0.20 0.34 0.78 1.00 0.20 0.60
18/6 0.94 0.06 0.14 0.24 0.76 1.00 0.14 0.57
20/4 0.62 0.38 0.02 0.03 0.73 1.00 0.02 0.51
22/2 0.37 0.63 0.01 0.01 0.73 1.00 0.01 0.50
Mean 0.69 0.31 0.11 0.18 0.76 0.99 0.11 0.55

Table S21: Results of DEXUS for unknown conditions (two conditions). “C1/C2” reports the
number of samples for each condition. Each line represents one experiment that consists of 100
data sets. The column names give the different performance measures. The I/NI thresholds are
given in table headings. The library size was 106 for all experiments.
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I/NI threshold 0.025
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.69 0.31 0.55 0.61 0.79 0.90 0.55 0.72
9/3 0.71 0.29 0.60 0.65 0.81 0.90 0.60 0.75
10/2 0.71 0.29 0.60 0.65 0.81 0.90 0.60 0.75
11/1 0.68 0.32 0.52 0.59 0.78 0.90 0.52 0.71
12/12 0.79 0.21 0.52 0.62 0.81 0.94 0.52 0.73
18/6 0.81 0.19 0.59 0.68 0.84 0.94 0.59 0.77
20/4 0.81 0.19 0.59 0.68 0.84 0.94 0.59 0.77
22/2 0.78 0.22 0.50 0.61 0.81 0.94 0.50 0.72
Mean 0.75 0.25 0.56 0.64 0.81 0.92 0.56 0.74

I/NI threshold 0.05
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.79 0.21 0.52 0.62 0.81 0.94 0.52 0.73
9/3 0.80 0.20 0.56 0.66 0.83 0.94 0.56 0.75
10/2 0.78 0.22 0.51 0.62 0.81 0.94 0.51 0.72
11/1 0.68 0.32 0.30 0.42 0.75 0.94 0.30 0.62
12/12 0.89 0.11 0.47 0.62 0.82 0.98 0.47 0.72
18/6 0.90 0.10 0.53 0.67 0.84 0.98 0.53 0.75
20/4 0.89 0.11 0.48 0.62 0.83 0.98 0.48 0.73
22/2 0.82 0.18 0.26 0.40 0.76 0.98 0.26 0.62
Mean 0.82 0.18 0.45 0.58 0.81 0.96 0.45 0.71

I/NI threshold 0.1
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.89 0.11 0.46 0.61 0.82 0.98 0.46 0.72
9/3 0.89 0.11 0.44 0.59 0.82 0.98 0.44 0.71
10/2 0.83 0.17 0.27 0.41 0.77 0.98 0.27 0.62
11/1 0.39 0.61 0.04 0.07 0.70 0.98 0.04 0.51
12/12 0.96 0.04 0.42 0.59 0.82 0.99 0.42 0.71
18/6 0.96 0.04 0.42 0.58 0.82 0.99 0.42 0.71
20/4 0.94 0.06 0.24 0.39 0.77 0.99 0.24 0.62
22/2 0.42 0.58 0.01 0.02 0.70 0.99 0.01 0.50
Mean 0.78 0.22 0.29 0.41 0.78 0.98 0.29 0.64

I/NI threshold 0.15
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.94 0.06 0.42 0.58 0.82 0.99 0.42 0.71
9/3 0.90 0.10 0.25 0.39 0.77 0.99 0.25 0.62
10/2 0.57 0.43 0.03 0.07 0.70 0.99 0.03 0.51
11/1 0.37 0.63 0.02 0.03 0.70 0.99 0.02 0.50
12/12 0.98 0.02 0.39 0.56 0.82 1.00 0.39 0.70
18/6 0.97 0.03 0.23 0.38 0.77 1.00 0.23 0.62
20/4 0.65 0.35 0.01 0.02 0.70 1.00 0.01 0.50
22/2 0.35 0.65 0.00 0.01 0.70 1.00 0.00 0.50
Mean 0.72 0.28 0.17 0.26 0.75 0.99 0.17 0.58

Table S22: Results of DEXUS for unknown conditions (two conditions). “C1/C2” reports the
number of samples for each condition. Each line represents one experiment that consists of 100
data sets. The column names give the different performance measures. The I/NI thresholds are
given in table headings. The library size was 107 for all experiments.
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I/NI threshold 0.025
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.76 0.24 0.78 0.77 0.86 0.89 0.78 0.83
9/3 0.77 0.23 0.83 0.80 0.87 0.89 0.83 0.86
10/2 0.77 0.23 0.82 0.79 0.87 0.89 0.82 0.86
11/1 0.73 0.27 0.68 0.70 0.83 0.89 0.68 0.79
12/12 0.85 0.15 0.74 0.79 0.88 0.94 0.74 0.84
18/6 0.86 0.14 0.82 0.84 0.91 0.95 0.82 0.88
20/4 0.86 0.14 0.81 0.84 0.90 0.95 0.81 0.88
22/2 0.84 0.16 0.65 0.73 0.86 0.95 0.65 0.80
Mean 0.80 0.20 0.76 0.78 0.87 0.92 0.76 0.84

I/NI threshold 0.05
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.86 0.14 0.72 0.78 0.88 0.95 0.72 0.84
9/3 0.87 0.13 0.77 0.81 0.90 0.95 0.77 0.86
10/2 0.85 0.15 0.66 0.74 0.86 0.95 0.66 0.80
11/1 0.75 0.25 0.35 0.48 0.77 0.95 0.35 0.65
12/12 0.94 0.06 0.67 0.78 0.89 0.98 0.67 0.82
18/6 0.95 0.05 0.74 0.83 0.91 0.98 0.74 0.86
20/4 0.94 0.06 0.63 0.75 0.87 0.98 0.63 0.80
22/2 0.89 0.11 0.32 0.48 0.78 0.98 0.32 0.65
Mean 0.88 0.12 0.61 0.71 0.86 0.97 0.61 0.79

I/NI threshold 0.1
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b.accuracy
6/6 0.95 0.05 0.65 0.77 0.88 0.99 0.65 0.82
9/3 0.94 0.06 0.58 0.72 0.86 0.99 0.58 0.78
10/2 0.90 0.10 0.32 0.48 0.79 0.98 0.32 0.65
11/1 0.37 0.63 0.02 0.04 0.70 0.99 0.02 0.50
12/12 0.99 0.01 0.61 0.75 0.88 1.00 0.61 0.80
18/6 0.98 0.02 0.57 0.72 0.87 1.00 0.57 0.78
20/4 0.97 0.03 0.31 0.47 0.79 1.00 0.31 0.65
22/2 0.40 0.60 0.01 0.01 0.70 1.00 0.01 0.50
Mean 0.81 0.19 0.38 0.49 0.81 0.99 0.38 0.69

I/NI threshold 0.15
C1/C2 precision FDR recall F-score accuracy specificity sensitivity b. accuracy
6/6 0.98 0.02 0.58 0.73 0.87 0.99 0.58 0.79
9/3 0.96 0.04 0.31 0.47 0.79 0.99 0.31 0.65
10/2 0.57 0.43 0.02 0.04 0.70 0.99 0.02 0.51
11/1 0.35 0.65 0.01 0.01 0.70 0.99 0.01 0.50
12/12 1.00 0.00 0.56 0.72 0.87 1.00 0.56 0.78
18/6 0.99 0.01 0.30 0.46 0.79 1.00 0.30 0.65
20/4 0.64 0.36 0.01 0.01 0.70 1.00 0.01 0.50
22/2 0.35 0.65 0.00 0.00 0.70 1.00 0.00 0.50
Mean 0.73 0.27 0.22 0.31 0.76 1.00 0.22 0.61

Table S23: Results of DEXUS for unknown conditions (two conditions). “C1/C2” reports the
number of samples for each condition. Each line represents one experiment that consists of 100
data sets. The column names give the different performance measures. The I/NI thresholds are
given in table headings. The library size was 108 for all experiments.
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