Vampires in the oceans: predatory cercozoan amoebae in marine habitats. Cédric Berney, Sarah Romac, Frédéric Mahé, Sébastien Santini, Raffaele Siano, and David Bass

accession number	clone name	phylogenetic position	habitat (MA = marine; FW = freshwater)	reference	remarks
JN090874	KRL01E14	Clade A, Vampyrellidae	FW – surface water from a reconstructed lake, Greece	Oikonomou et al. 2012	see Fig. 4 & 5
EU567262	DB-2703-5	Clade A, Vampyrellidae	FW – shallow anaerobic sediment, UK	Bass et al. 2009	see Fig. 4 & 5
DQ409093	VN3	Clade A, Vampyrellidae	FW – hyper-eutrophic lake picoplankton, France	Lepère et al. 2007	> 98% identical to EU567262
EU567266	lb10	Clade A, Vampyrellidae	FW – stream sediment, UK	Bass et al. 2009	> 98% identical to V. lateritia
EU567265	ihs12	Clade A, incertae sedis	FW – stream sediment, Panama	Bass et al. 2009	see Fig. 4 & 5
EF024716	Elev_18S_1206	Clade A, incertae sedis	FW – trembling aspen rhizosphere, USA	Lesaulnier et al. 2008	see Fig. 4 & 5
AY620291	10-3.2	Clade A, incertae sedis	FW – associated with submerged pond lily stems, UK	Bass & Cavalier-Smith 2004	see Fig. 4
EU567264	8-2.4	Clade A, incertae sedis	FW – associated with submerged pond lily stems, UK	Bass et al. 2009	> 98% identical to AY620291
AY620292	4-1.6	Clade A, Leptophryidae	FW – associated with Sphagnum around a pond, UK	Bass & Cavalier-Smith 2004	see Fig. 4
AY620306	13-1.5	Clade A, Leptophryidae	FW – woodland stream sediment, Canada	Bass & Cavalier-Smith 2004	see Fig. 4
EU567257	9-6.3	Clade A, Leptophryidae	FW – woodland soil, Canada	Bass et al. 2009	< 1000 bp / not including V4
EU567258	fp12	Clade A, Leptophryidae	FW – stream sediment, New Zealand	Bass et al. 2009	see Fig. 4 & 5
EU567259	DB-2703-14	Clade A, Leptophryidae	FW – shallow anaerobic sediment, UK	Bass et al. 2009	see Fig. 4 & 5
EU567260	DB-2703-7	Clade A, Leptophryidae	FW – shallow anaerobic sediment, UK	Bass et al. 2009	see Fig. 4 & 5
EU567261	DB-2703-28	Clade A, Leptophryidae	FW – shallow anaerobic sediment, UK	Bass et al. 2009	see Fig. 4 & 5
EU567263	se11	Clade A, Leptophryidae	FW - stream sediment, New Zealand	Bass et al. 2009	see Fig. 4 & 5
AY642743	A51	Clade A, Leptophryidae	FW – lake picoplankton, France	Lefranc et al. 2005	> 98% identical to EU567261
DQ409086	VO3	Clade A, Leptophryidae	FW – hyper-eutrophic lake picoplankton, France	Lepère et al. 2007	see Fig. 4 & 5
DQ409121	VP16	Clade A, Leptophryidae	FW – hyper-eutrophic lake picoplankton, France	Lepère et al. 2007	< 1000 bp / not including V4
FJ410735	EBA1.1	Clade A, Leptophryidae	FW – shallow lake, China	Chen – unpubl.	> 98% identical to EU567261
FJ410786	EBA124.49	Clade A, Leptophryidae	FW – shallow lake, China	Chen – unpubl.	< 1000 bp / not including V4
GQ844430	WD0-49	Clade A, Leptophryidae	FW – lake plankton during Microcystis bloom, China	Chen et al. 2010	< 1000 bp / not including V4
GQ844515	WD4-84	Clade A, Leptophryidae	FW – lake plankton during Microcystis bloom, China	Chen et al. 2010	< 1000 bp / not including V4
GQ844533	WD4-104	Clade A, Leptophryidae	FW – lake plankton during Microcystis bloom, China	Chen et al. 2010	< 1000 bp / not including V4
AB572110	ABC2_C12	Clade A, Leptophryidae	FW – clay wall material, Japan	Kitajima et al. 2010	> 98% identical to EU567259
AB572111	ABC2_D02	Clade A, Leptophryidae	FW – clay wall material, Japan	Kitajima et al. 2010	> 98% identical to EU567259
AB572112	ABC1_G06	Clade A, Leptophryidae	FW – clay wall material, Japan	Kitajima et al. 2010	> 98% identical to EU567259
DQ512535	LVNP2-BH107-10-36F	Clade A, Leptophryidae	FW – acidic, hydrothermal sediment, USA	Brown & Wolfe 2006	< 1000 bp / not including V4
GU297635	AS.E24#	Clade A, Leptophryidae	FW - glacial cryoconite hole ecosystem, Antarctica	Cameron et al. – unpubl.	< 1000 bp / not including V4

Supplementary Table S2. List of the 62 Vampyrellid SSU rDNA environmental clones identified in the GenBank database.

accession number	clone name	phylogenetic position	habitat (MA = marine; FW = freshwater)	reference	remarks
AB721056	SB15 2010	Clade B. lineage B1	FW – water purification plant. Japan	Fuiimoto & Ohnishi – unpubl	see Fig. 4 & 5
EU567267	sm27	Clade B lineage B1	FW – stream sediment New Zealand	Bass et al. 2009	see Fig. 4 & 5
EF586152	384-016	Clade B, lineage B1	FW – stream biofilm. New Zealand	Dopheide et al. 2008	> 98% identical to EU567267
AB695521	MPE2-27	Clade B. lineage B2	FW – lake moss pillars. Antarctica	Nakai et al. 2012	see Fig. 4 & 5
AY605200	Sev055	Clade B. lineage B2	FW – stream sediment. Switzerland	Berney et al. 2004	see Fig. 4 & 5
AY605211	Sey076	Clade B. lineage B2	FW – stream sediment, Switzerland	Berney et al. 2004	< 1000 bp / not including V4
AB622340	K9MAY2010	Clade B, lineage B3	FW – lake plankton. Japan	Fujimoto & Ohnishi – unpubl.	see Fig. 4 & 5
AY179971	CCI78	Clade B, lineage B3	MA – salt marsh anoxic sediment/water interface. USA	Stoeck & Epstein 2003	see Fig. 4 & 5
EU567269	Rhiz T11	Clade B. lineage B3	MA – Mediterranean Sea coastal oxic sediment. France	Bass et al. 2009	see Fig. 4 & 5
FJ157330	kor 110904 15	Clade B, lineage B3	FW – lake water column. Greece	Genitsaris et al. 2009	see Fig. 4 & 5
GU385680	ME Euk FW80	Clade B. lineage B3	MA – associated with Ascophyllum nodosum, USA	Haska et al. 2012	see Fig. 4 & 5
GU385614 *	ME Euk FW13	Clade B, lineage B3	MA – associated with Ascophyllum nodosum, USA	Haska et al. 2012	> 98% identical to GU385680
GU385615 *	ME Euk FW14	Clade B, lineage B3	MA – associated with Ascophyllum nodosum, USA	Haska et al. 2012	> 98% identical to GU385680
GU385647 *	ME Euk FW44	Clade B, lineage B3	MA – associated with Ascophyllum nodosum, USA	Haska et al. 2012	> 98% identical to GU385680
EU567268	op14	Clade B, lineage B4	MA – oxic sediment, Panama	Bass et al. 2009	see Fig. 4 & 5
EU910611	D47	Clade B, lineage B5	FW – sulfur-rich, hypoxic groundwater, USA	Nold et al. 2010	see Fig. 4 & 5
EU910603	D40	Clade B, subclade T	FW – sulfur-rich, hypoxic groundwater, USA	Nold et al. 2010	see Fig. 4 & S1A
EF024704 *	Elev_18S_1191	Clade B, subclade T	FW – trembling aspen rhizosphere, USA	Lesaulnier et al. 2008	see Fig. 4 & S1A
EF539120	MB07.8	Clade B, subclade T	MA – semi-enclosed harbour picoplankton, China	Cheung et al. 2008	see Fig. S1A
EF539123	MB07.45	Clade B, subclade T	MA – semi-enclosed harbour picoplankton, China	Cheung et al. 2008	> 98% identical to EF539120
AY295738	RD010517.43	Clade B, subclade T	MA – English Channel coastal picoplankton, France	Romari & Vaulot 2004	< 1000 bp / not including V4
AY295737	RD010517.42	Clade B, subclade T	MA – English Channel coastal picoplankton, France	Romari & Vaulot 2004	> 98% identical to AY295738
FJ221401	BTQB20030503.0020	Clade B, subclade T	MA – Atlantic estuary surface water, USA	Caron et al. – unpubl.	< 1000 bp / not including V4
FJ221389	BTQB20030503.0004	Clade B, subclade T	MA – Atlantic estuary surface water, USA	Caron et al. – unpubl.	> 98% identical to FJ221401
FJ221415 *	BTQB20030503.0040	Clade B, subclade T	MA – Atlantic estuary surface water, USA	Caron et al. – unpubl.	> 98% identical to FJ221401
GU385686 *	ME_Euk_FW88	Clade B, subclade T	MA – associated with Ascophyllum nodosum, USA	Haska et al. 2012	< 1000 bp / not including V4
JF775323	TWII_I_42C_1g	Clade B, subclade T	FW – associated with tap water biofilm	Valster et al. – unpubl.	< 1000 bp / not including V4
JF775334	TWII_I_42C_3d	Clade B, subclade T	FW – associated with tap water biofilm	Valster et al. – unpubl.	< 1000 bp / not including V4
JN585098	SGB2_148	Clade B, subclade T	MA – picoplankton, China	Wu & Li – unpubl.	< 1000 bp / not including V4
GU479951	PR4_3E_90	Clade C, subclade P	FW – mountain peat bog, Switzerland	Lara et al. 2011	see Fig. 4 & S1B
AF372743	LEMD004	Clade C, subclade P	FW – anoxic lake sediment, USA	Dawson & Pace 2002	see Fig. 4 & S1B
AF372742	LEMD682	Clade C, subclade P	FW – anoxic lake sediment, USA	Dawson & Pace 2002	> 98% identical to AF372743
AF372744	LEMD052	Clade C, subclade P	FW – anoxic lake sediment, USA	Dawson & Pace 2002	> 98% identical to AF372743

* Chimeric sequences – see Supplementary Table S3 for details.

References cited

- Bass D, Cavalier-Smith T. (2004). Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). *Int J Syst Evol Microbiol* **54**: 2393-2404.
- Bass D, Chao EEY, Nikolaev S, Yabuki A, Ishida K, Berney C et al. (2009). Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist 160: 75-109.
- Berney C, Fahrni J, Pawlowski J. (2004). How many novel eukaryotic 'kingdoms'? Pitfalls and limitations of environmental DNA surveys. *BMC Biol* **2**: 13.
- Brown PB, Wolfe GV. (2006). Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA. *J Eukaryot Microbiol* **53**: 420-431.
- Chen M, Chen F, Xing P, Li H, Wu QL. (2010). Microbial eukaryotic community in response to *Microcystis* spp. bloom, as assessed by an enclosue experiment in Lake Taihu, China. *FEMS Microbiol Ecol* **74**: 19-31.
- Cheung MK, Chu KH, Li CP, Kwan HS, Wong CK. (2008). Genetic diversity of picoeukaryotes in a semi-enclosed harbour in the subtropical western Pacific. Aquat Microb Ecol 53: 295-305.
- Dawson SC, Pace NR. (2002). Novel kingdom-level eukaryotic diversity in anoxic environments. *Proc Natl Acad Sci USA* **99**: 8324-8329.
- Dopheide A, Lear G, Stott R, Lewis G. (2008). Molecular characterization of ciliate diversity in stream biofilms. *Appl Environ Microbiol* **74**: 1740-1747.
- Genitsaris S, Kormas KA, Moustaka-Gouni M. (2009). Microscopic eukaryotes living in a dying lake (Lake Koronia, Greece). *FEMS Microbiol Ecol* **69**: 75-83.
- Haska CL, Yarish C, Kraemer G, Blaschik N, Whitlach R, Zhang H, Lin S. (2012). Bait worm packaging as a potential vector of invasive species. *Biol Invasions* 14: 481-493.
- Kitajima S, Kamei K, Nishitani M, Sato H. (2010). Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings. *Biosci Biotechnol Biochem* **74**: 2083-2086.

- Lara E, Mitchell EAD, Moreira D, López García P. (2011). Highly diverse and seasonally dynamic protest community in a pristine peat bog. *Protist* **162**: 14-32.
- Lefranc M, Thénot A, Lepère C, Debroas D. (2005). Genetic diversity of small Eukaryotes in lakes differing by their trophic status. *Appl Environ Microbiol* **71**: 5935-5942.
- Lepère C, Domaizon I, Debroas D. (2007). Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. *Appl Environ Microbiol* 74: 2940-2949.
- Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S *et al.* (2008). Elevated atmospheric CO₂ affects soil microbial diversity associated with trembling aspen *Environ Microbiol* **10**: 926-941.
- Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H *et al.* (2012). Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. *Polar Biol* **35**: 1495-1504.
- Nold SC, Zajack HA, Biddanda BA. (2010). Eukaryal and archaeal diversity in a submerged sinkhole ecosystem influenced by sulfur-rich, hypoxic groundwater. *J Great Lakes Res* **36**: 366-375.
- Oikonomou A, Katsiapi M, Karayanni H, Moustaka-Gouni M, Kormas KA. (2012). Plakton microorganisms coinciding with two consecutive mass fish kills in a newly reconstructed lake. *ScientificWorldJournal* **2012**: 504135.
- Romari K, Vaulot D. (2004). Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. *Limnol Oceanogr* 49: 784-798.
- Stoeck T, Epstein S. (2003). Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. *Appl Environ Microbiol* **69**: 2657-2663.