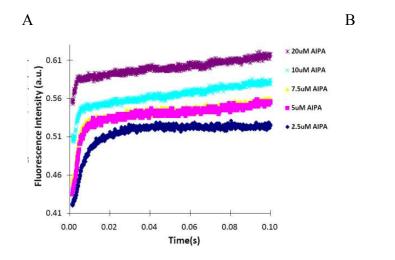
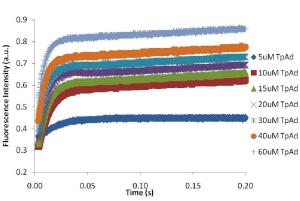
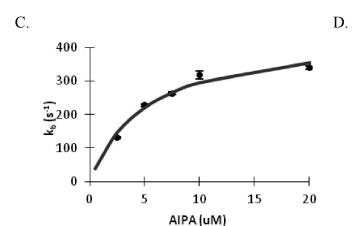
Kinetic Mechanism of Human Histidine Triad Nucleotide Binding Protein 1 (Hint1)


Xin Zhou¹, Tsui-Fen Chou¹, Brandon E Aubol³, Chin Ju Park², Richard Wolfenden⁴, Joseph Adams³ and Carston R. Wagner¹*


¹Department of Medicinal Chemistry and ²Minnesota NMR Facility, University of Minnesota, Minneapolis MN ³Department of Pharmacology, University of California-San Diego, San Diego, CA ⁴Department of Biochemistry, University of North Carolina, Chapel Hill NC.


Supporting information

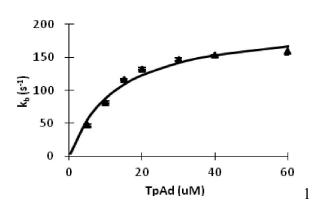
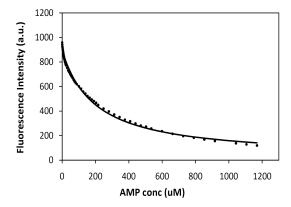
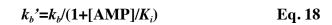

Supplemental Figure S1-S6

Figure S1 Pre-steady state kinetics of formation of the adenylated enzyme intermediate. (A) Stopped flow traces using varied concentration of AIPA exhibited a biphasic manner, a burst phase followed by a linear phase. (B) Stopped flow traces using varied concentration of TpAd. (C) Plot of the determined burst rate constants as a function of the AIPA concentration according to Eq 2. (D) Plot of the determined burst rate constants as a function of the TpAd concentration according to Eq 2.





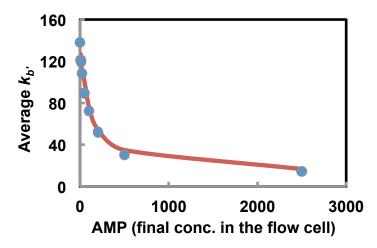
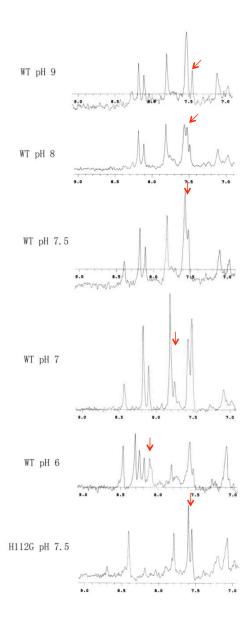


Figure S2 Dissociation constant (K_d) of AMP determined by fluorescence titration of hH1. The fluorescence of WT human Hint1 (6 μ M) was titrated by addition of AMP. Data were fitted using eq 15 and K_d =194 ± 9) μ M.


Figure S3 Determination of Ki for AMP in catalytic trapping experiments. k_b ' and k_b represent the burst rates in the presence and absence of AMP, respectively. A K_i of 136 μ M was estimated by fitting the curve with eq. 18.

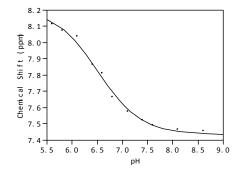


Figure S4 NMR analysis of histidine pKa in human Hint1. (A) Representative 1D proton TOCSY spectra for WT and H112G Hint1; (B) pKa titration curve for H112.

A.

B.

