Overexpression of *fetA* (*ybbL*) and *fetB* (*ybbM*), encoding an iron exporter, enhances

resistance to oxidative stress in Escherichia coli

Sergios A. Nicolaou, Alan G. Fast, Eiko Nakamaru-Ogiso, and Eleftherios T. Papoutsakis

Supplemental Information

r	1		
Strain	Plasmid	Genomic Region/ Size *	Genes in plasmid **
	Library		
1	2MgL	1552,357 - 1,555,984 (3,627)	(maeA), sra, bdm, osmC, (ddpF)
	4MgL	4,032,316 - 4,029,152 (-3,164)	pepQ, $yigZ$, $(trkH)$
2	2MgL	4,412,412 - 4,414,354 (1,942)	(aidB), yjfN
	4MgL	127,628 - 124,611 (-3,017)	(aceE), aceF
3	2MgL	513,453 - 517,242 (3,789)	(cueR), ybbJ, qmcA, ybbL, ybbM, (ybbN)
	4MgL	769,180 - 765,615 (-3,565)	(mngA), (mngB)
4	2MgL	517,376 - 513,076 (-4,300)	cueR, ybbJ, qmcA, ybbL, ybbM, (ybbN)
	4MgL	366,152 - 369,903 (3,751)	(lacI), mhpR, mhpA, (mhpB)
5	2MgL	517,376 - 513,076 (-4,300)	cueR, ybbJ, qmcA, ybbL, ybbM, (ybbN)
	4MgL	362,352 - 367,016 (4,664)	lacZ, lacI, (mhpR)
6	2MgL	517,376 - 513,076 (-4,300)	cueR, ybbJ, qmcA, ybbL, ybbM, (ybbN)
	4MgL	2,820,268 - 2,823,783 (3,515)	recA, ygaD, mltB

Table S1. Plasmids isolated for the H₂O₂ tolerant clones.

* A negative sign indicates that the fragment is included in the opposite orientation

** Genes included are in parenthesis are incomplete genes on the isolated plasmids

Fig. S1. Bioinformatic analysis of FetA and FetB. (A) pBLAST of FetA reveals specific hits for ABC transporters and the P-loop-NTPase superfamily (1). The conserved domains in FetA were predicted using the NCBI Conserved Domain Database (6). (B) The transmembrane domains for FetB and their internal localization were predicted using the TMHMM v. 2.0 server (4).

ALS3	MDLKWDDFFNDYEWLIVFLKGMVKPAAALVVVLLAVILSYSQNLSLEG	48
Star2	MMASMAALLQRLLVVVNQVDPGAPGFWREFLVGMLKPVAATAVVAMAVALSFTQRLGLEG	60
FetB	MNSHNITNESLALALMLVVVAILISHKEKLALEK	34
	· · · * :* :*: :*··:**	
AT C 2		109
ALDJ Starj		120
		120
retB	DILWSVGRAIIQLIIVGIVLKIIFSVDDASLTLLMVLFICFNAAWNAQKRSKIIAKAFIS	94
	•••••••••••••••••••••••••••••••••••••••	
ALS3	AGLSILAGTSITMFLLVLLNVFPFTPRYMIPIAGMLVGNAMTVTGVTMKOLRDDIKMOLN	168
Star2	AAVSILAGTSVTMALLVALRVFPFTPRYIIPVAGMMVGNAMTVTGVTMKKLREDVGMORG	180
FetB	SFIAITVGAGITLAVLILSGSIEFIPMOVIPIAGMIAGNAMVAVGLCYNNLGORVISEOO	154
	: ::* .*:.:*: : * * :**:***:.****: ::* : :	
AT. 93		228
Star?		2/0
Fot P		240
recb		214
ALS3	IQLQIVVMNMMVGAATVSSITSTYLCWPSFFTKAYQLQTHVFSSD 273	
Star2	IQLQIVVMNMLMGASTVSSILSTYLCWPAFFTGAFQLNDAVFAAD 285	
FetB	IKYQIMVTFMLLSTASLSTIIACYLTYRKFYNSRHOLVVTOLKKK 259	
	*: **:* *::.::*:*: **: *:** : .	

Fig. S2. Protein homology between FetB, ALS3 and Star2. The sequence alignment of FetB, ALS3 and Star2. Sequence alignment was performed using ClustalW (2, 5). The consensus symbols are represented as generated by ClustalW (* indicates a fully conserved residue, : indicates residues with strongly similar properties, and . indicates conservation of residues with weakly similar properties).

Fig. S3. Growth of *E. coli* BW25113 strains in LB media with 100 μ M FeSO₄. Overnight cultures grown in LB were diluted 100-fold in fresh LB medium and grown for 2 hours to early exponential phase. The cultures were then diluted 100-fold into 20 ml fresh LB containing 100 μ M FeSO₄ (filled markers) or no additives (empty markers) and growth was monitored spectrophotometrically. Dashed lines represent the Δfur strains. The strains are marked as follows: WT BW25113 squares, BW25113 Δfur circles, BW25113 $\Delta fetB$ triangles, BW25113 Δfur diamonds. Experiments were performed in duplicate and the average is shown.

Fig. S4. Survival of the WT BW25113, BW25113 Δfur , BW25113 $\Delta fetB$, and the BW25113 $\Delta fetB$, $\Delta fetB$ Δfur strains after 30 min 4 mM H₂O₂ stress in LB supplemented with 30 μ M FeSO₄. The Δfur knockouts exhibit increased sensitivity to H₂O₂ stress when supplemented with iron. The survival rate of the BW25113 $\Delta fur \Delta fetB$ strains could not be determined as it was below the resolution of the plating assay. Data are means \pm SEM (n = 3).

Investigating the protective role of manganese against oxidative stress by H_2O_2

The role of manganese in H₂O₂ stress was investigated by culturing the BW25113, $\Delta fetA$ and $\Delta fetB$ with the pCntl and pF3 (*fetA-fetB*) overexpression plasmids in minimal media supplemented with 30 µM MnCl₂. Manganese provided a protective effect to all strains, as evidenced in Fig. S5 A and B (compared to Fig. 3A & B). The $\Delta fetA$ and $\Delta fetB$ strains have higher tolerance to H₂O₂ stress when supplemented with manganese, indicating that the metal is providing this protective effect. Furthermore, this suggests that FetAB does not facilitate manganese transport as tolerance was increased in the knockouts when manganese was present.

The data presented in this study shows that FetAB transports iron. However, iron importers have been shown to also facilitate manganese import, such as a SitABCD homologue in *E. coli* (7) and the *Streptococcus pyogenes* MtsABC transporter (3). We investigated the effects of manganese (Fig. S5A & B) and iron (Fig. 4 A & B) individually, and show that iron is the substrate of FetAB. We also investigated the effects of both metals (Fig. S5 C & D), to determine if the beneficial effect of manganese can counteract the detrimental effect of iron when coupled with H_2O_2 stress. As shown in Fig. S5C, iron is more detrimental to the $\Delta fetA$ and $\Delta fetB$ strains compared to the WT strain, even when manganese is present. This is in agreement with our earlier data, where iron (with no manganese) was shown to be more detrimental to the knockout strains. Manganese cannot abolish the extra ROS species created from the iron, but does provide some protective effect against H_2O_2 stress. Thus, the FetAB transporter does not appear to have a role in manganese transport, but clearly has a role in iron export.

Fig. S5. Survival under H₂O₂ stress in M9 minimal media with 30 μ M MnCl₂ or 30 μ M MnCl₂ and 30 μ M FeSO₄. (*A*) Survival rates of *E. coli* BW25113 (WT), $\Delta fetA$ and $\Delta fetB$ strains with a control plasmid (pCntl) after a 30 minute exposure to 4 mM H₂O₂ at 37 °C in M9 minimal media with 30 μ M MnCl₂. *p*-values indicate the statistical significance of a Student's t-test performed between the WT and the KO strains. (*B*) Survival rates of *E. coli* BW25113 (WT), $\Delta fetA$ and $\Delta fetB$ strains with plasmid pF3 (*fetA* and *fetB* overexpression) after a 30 minute exposure to 4 mM H₂O₂ at 37 °C in M9 minimal media with 30 μ M MnCl₂. (*C*) Survival rates of *E. coli* BW25113 (WT), $\Delta fetA$ and $\Delta fetB$ strains with a control plasmid after a 30 minute exposure to 4 mM H₂O₂ at 37 °C in M9 minimal media with 30 μ M MnCl₂. (*C*) Survival rates of *E. coli* BW25113 (WT), $\Delta fetA$ and $\Delta fetB$ strains with a control plasmid after a 30 minute exposure to 4 mM H₂O₂ at 37 °C in M9 minimal media with 30 μ M MnCl₂ and 30 μ M FeSO₄. The *p*-values between the WT and KO strains are less than 0.001. (D) Survival rates of *E. coli* BW25113 (WT), $\Delta fetA$ and $\Delta fetB$ strains with plasmid pF3 (*fetA* and *fetB* overexpression) after a 30 minute and the provides between the WT and KO strains are less than 0.001. (D) Survival rates of *E. coli* BW25113 (WT), $\Delta fetA$ and $\Delta fetB$ strains with plasmid pF3 (*fetA* and *fetB* overexpression) after a 30 minute

exposure to 4 mM H_2O_2 at 37 °C in M9 minimal media with 30 μ M MnCl₂ and 30 μ M FeSO₄. For (A) – (D), the means of three biological experiments, each with three technical replicates are shown, with error bars indicating the SEM.

References

- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. H. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402.
- Goujon, M., H. McWilliam, W. Z. Li, F. Valentin, S. Squizzato, J. Paern, and R. Lopez. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695-W699.
- Janulczyk, R., S. Ricci, and L. Bjorck. 2003. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 71:2656-2664.
- Krogh, A., B. Larsson, G. von Heijne, and E. L. L. Sonnhammer. 2001.
 Predicting transmembrane protein topology with a hidden Markov model:
 Application to complete genomes. J Mol Biol 305:567-580.
- Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
- Marchler-Bauer, A., S. N. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, J. D. Jackson, Z. X. Ke, C. J. Lanczycki, F. Lu, G. H. Marchler, M. Mullokandov, M. V. Omelchenko, C. L. Robertson, J. S. Song, N. Thanki, R. A. Yamashita, D. C. Zhang, N. G. Zhang, C. J. Zheng, and S. H.

Bryant. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res **39**:D225-D229.

 Sabri, M., S. Leveille, and C. M. Dozois. 2006. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiol-Sgm 152:745-758.