Supplemental Tables and Figures

Strain	Genotype	Figure	Source	
OHI246	h- leu1-32 ura4-D18 ade6-M210	2, 3, 4, 5,	K. Gould ^a	
		6, 7		
OHI408	h- cwf10 2-127∆ ade6-M21X leu1-32 ura4-	2, 3, 4, 5,	This work	
	D18	6, 7, Table		
	h, hrs HAukan Dadas Mata laut 22 ura	2	Adapted from	
011479	14 DT2-AAKalin adeo-W2 TO IEUT-32 UT84-	2	K Gould ^a	
	b_{\pm} prp3-linker3XV5 cwf10 2-127A ade6-	2	This work	
0111-00	M21X leu1-32 ura4-D18	2		
OHI371	h+ prp3-linker3XV5	2	This work	
OHI482	h- brr2-HA::kanR cwf10 2-127∆ ade6-M21X	2, S3	This work	
	leu1-32 ura4-D18			
OHI323	h- prp1-myc13X::kanR ade6-M210 leu1-32	2, 4	(1)	
	ura4-D18			
OHI439	h- prp1-myc13X::kanR cwf10 2-127∆ ade6-	2, 4	This work	
	M21X leu1-32 ura4-D18			
OHI448	h- cwf10 2-127∆::kanR ade6-M21X leu1-32	5	This work	
	ura4-D18			
OHI463	h+ cdc28-P8	5	Adapted from	
			(2)	
OHI467	h+ cdc28-P8 cwf10 2-127Δ::kanR ade6-M21X	5	This work	
	ura4-D18	_		
OHI464	h+ prp10-1	5	Adapted from	
			(3) This work	
OHI468	n+ prp10-1 cw110 2-127Δ::kanR	5	I NIS WORK	
011400	n+ spp42-1.:kank ieu1-32	5		
	h_{1} con $1/1$ -1::kan \mathbb{R} lou 1-32 ura $1/1$	5	(4) Adapted from	
0111403	11+ Spp41-1Kalli (leu 1-52 ula4-D16	5		
OHI471	h+ spp41-1"kanB cwf10 2-127A ade6-M21X	5	This work	
	leu1-32 ura4-D18	0		
OHI322	h+ prp1-4 ura4-D18	5	Adapted from	
		-	(3)	
OHI321	h+ prp4-73 leu1-32 ura4-294	5	Adapted from	
			(5)	
OHI462	h- prp4-73 cwf10 2-127∆::kanR leu1-32 ura4-	5	This work	
	D18 or -294			
OHI478	h+ aar2::kanR ade6-M216 leu1-32 ura4-D18	5	(6)	
OHI481	h- aar2::kanR cwf10 2-127∆ ade6-M21X leu1-	5	This work	

Table S1: Schizosaccharomyces pombe strains used in this study

	32 ura4-D18		
OHI483	<i>h</i> + <i>cwf10 2-23∆ ade6-M21X leu1-32 ura4-</i>		This work
	D18		
OHI260	h- cdc5-TAP::kanR	Tables 1, 2	Adapted from
			(7)
OHI491	h- cdc5-TAP::kanR cwf10 2-127∆ leu1-32	Table 1	This work
OHI383	h-/h+ cwf10+/cwf10::ura4+ ade6-M210/ade6-	integrant	This work
	M216 leu1-32/leu1-32 ura4-D18/ura4-D18	construction	

^aVanderbilt University School of Medicine, Nashville, TN.

Table S2: Primers used in this study

Analysis	Name	Purpose	Primer sequence(s) (5'-3')
RT-PCR	tbp1_a F	amplify first	CGCTTTACCCACCACGGCCTCGCAAG
	BL365	tbp1 intron	
RT-PCR	tbp1_a R	amplify first	TTCTGCATTACGTGCATGTAGCGC
	BL366	tbp1 intron	
RT-PCR	mrps16_b F	amplify	AAAGCACCTCAAGCCAAACCTATCGA
	BL541	second	
		mrps16	
		intron	
RT-PCR	mrps16_b R	amplify	TCAAGAAACGGGTTTTTTAGGAAGCAACT
RT-PCR	mrps16_b R BL542	amplify second	TCAAGAAACGGGTTTTTTAGGAAGCAACT
RT-PCR	mrps16_b R BL542	amplify second <i>mrps16</i>	TCAAGAAACGGGTTTTTTAGGAAGCAACT
RT-PCR	mrps16_b R BL542	amplify second <i>mrps16</i> intron	TCAAGAAACGGGTTTTTTAGGAAGCAACT
RT-PCR Northern	mrps16_b R BL542 BL432	amplify second <i>mrps16</i> intron hybridize U1	TCAAGAAACGGGTTTTTTAGGAAGCAACT ATAACTGAGTCTCCACAATTCTTGTG
RT-PCR Northern Northern	mrps16_b R BL542 BL432 BL429	amplify second <i>mrps16</i> intron hybridize U1 hybridize U2	TCAAGAAACGGGTTTTTTAGGAAGCAACT ATAACTGAGTCTCCACAATTCTTGTG AGAACAGATACTACACTTGATCTAAG
RT-PCR Northern Northern Northern	mrps16_b R BL542 BL432 BL429 BL433	amplify second <i>mrps16</i> intron hybridize U1 hybridize U2 hybridize U4	TCAAGAAACGGGTTTTTTAGGAAGCAACT ATAACTGAGTCTCCACAATTCTTGTG AGAACAGATACTACACTTGATCTAAG AAAAGTTCCTCACTGATAAGCGTAAT
RT-PCR Northern Northern Northern Northern	mrps16_b R BL542 BL432 BL429 BL433 BL434	amplify second <i>mrps16</i> intron hybridize U1 hybridize U2 hybridize U4 hybridize U5	TCAAGAAACGGGTTTTTTAGGAAGCAACT ATAACTGAGTCTCCACAATTCTTGTG AGAACAGATACTACACTTGATCTAAG AAAAGTTCCTCACTGATAAGCGTAAT ACAGTCAAATTAGCACACCTTACAAA

Table S3. Pre-mRNA splicing factors co-purifying with TAP-NTE in a *cwf10-\Delta NTE*

background at either 150 or 75 mM NaCl detected by 1D liquid chromatography-tandem

			TAP-NTE from <i>cwf10-∆NTE</i>					
	S. pombe	ORF number	150 mM NaCl ^a 75 mM NaCl		S. cerevisiae	H. sapiens		
			Ι	П	Ι	II		
	Smb1	SPAC26A3.08	4 ^b	3	4	3	Smb1	SMB/B'
Core snRNP	Smd1	SPAC27D7.07c	1	3	3	3	Smd1	SMD1
	Smd2	SPAC2C4.03c	6	3	5	6	Smd2	SMD2
	Smd3	SPBC19C2.14	3	1	4	5	Smd3	SMD3
	Sme1	SPBC11G11.06c	1	1	2	3	Sme1	SME1
	Smf1	SPBC3E7.14	5	3	4	3	Smf1	SMF1
	Smg1	SPBC4B4.05	^c	3	2	3	Smg2	SMG1
U2	Lea1	SPBC1861.08c	9	3	15	8	Lea1	U2A'
	Msl1	SPBC8D2.09c	1		3	1	Msl1	U2B"
	Prp10	SPAC27F1.09c			1		Hsh155	SF3B160
	Cwf10-∆NTE	SPBC215.12	60	42	71	65	Snu114	U5-116
115	Brr2	SPAC9.03c					Brr2	U5-200
03	Spp42	SPAC4F8.12c	57	33	77	75	Prp8	U5-220
	Cwf17/Spf38	SPBC1289.11	9	4	16	12	UNK ^d	U5-40
	Cdc5	SPAC644.12	34	13	39	42	Cef1	CDC5
	Cwf2	SPAC3A12.11c	13	5	14	15	Cwc2	RBM22
NTC core	Cwf7	SPBC28F2.04c	10	6	14	8	Snt309	SPF27
	Cwf15	SPBC337.06c	6	1	9	7	Cwc15	AD002
	Prp5	SPBP22H7.07	14	8	22	22	Prp46	PRL1
	Prp19	SPAC29A4.08c	18	17	16	25	Prp19	PRP19
	Cwf3	SPBC211.02c	26	9	32	36	Syf1	SYF1
NTC	Cwf4	SPBC31F10.11c	21	11	28	25	Clf1	CRN1
INIC- associated	Cwf5/Ecm2	SPCC550.02c	12	10	21	22	Ecm2/Slt11	RBM22
associated	Cwf12	SPBC32F12.05c	6	6	8	7	Isy1	ISY1
	Prp45	SPCC188.11	3	3	10	11	Prp45	SKIP
	Prp17	SPBC6B1.10	17	15	25	31	Prp17	hPRP17
	Syf2	SPBC3E7.13c	10	5	10	9	Syf2	SYF2
	Cwf11	SPBC646.02	36	17	52	50	UNK	hCWF11
	Cwf14	SPBC24C6.11	8	4	10	11	Cwc14	G10
	Cwf18	SPCP1E11.07c	6	5	8	5	UNK	MGC23918
Other	Cwf19	SPAC30D11.09	11	3	15	19	UNK	hCWF19L2
	Cwf21	SPAC4A8.09c	1		5	2	Cwc21	SRm300
	Cwf22	SPBC13E7.01	2	1	4	6	Cwc22	hCWC22
	Cyp1	SPAC57A10.03	5	1	5	5	UNK	PPIL1
-	Mug161	SPAC1F3.09					YGR093W	CWF19L1
	Prp16	SPBC1711.17					Prp16	PRP16
	Prp43	SPBC16H5.10c					Prp43	hPRP43
	Prp22	SPAC10F6.02c			1		Prp22	hPRP22
	Saf4	SPBC18H10.10c	3	3	7	4	UNK	CCDC130

mass spectrometry (LC-MS/MS).

Slu7	SPBC365.05c					Slu7	SLU7
Sum3	SPCC1795.11	7	1	2	1	Ded1	DDX3
unnamed	SPAC20H4.09					UNK	DHX35
Pab1	SPAC57A7.04c			6	6	Pab1	PABC1
Ubp10	SPBC577.07			1	4	Sad1	USP39

^aResults for purifications done at 150 mM NaCl are the same as shown in Table 2 and are included again in this table to make comparison easier. ^bPeptide counts of identified proteins in each biological replicate (I and II), ^c --- indicates no peptides identified, ^dUNK indicates that an ortholog is unknown or not present.

Figure S1. Reproducibility of splicing efficiency in replicates. Each point represents

an intron (5,361 in total; 'r' Pearson's correlation coefficient; \log_2 scale). (A) Two wildtype replicates. (B) Two *cwf10-\DeltaNTE* replicates.

Figure S2. Analysis of recombinant Cwf10(1-135)His₆. (A) Coomassie stained SDS-PAGE gel of recombinant Cwf10(1-135)His₆. Molecular weight markers in kilodaltons are shown on left. (B) Predicted secondary structure calculated from the Far-UV spectrum seen in Fig. 6E using the program K2D2 (1). (C) 15 N- 1 H HSQC spectrum of Cwf10(1-135)His₆ at 50°C. (D) 15 N- 1 H HSQC spectrum of Cwf10(1-135)His₆ in 6 M Guanidine-HCl.

Figure S3. TAP-NTE co-immunoprecipitates Brr2-HA. *pREP41 NTAP* or *pREP41 NTAP-NTE* were expressed in *cwf10-\DeltaNTE brr2-HA* cells. TAP and TAP-NTE were immunoprecipitated with IgG-Sepharose beads and then immunoblotted with anti-HA antibodies. Positions of proteins on the immunoblot are labeled.

SUPPLEMENTAL REFERENCES

- Carnahan, R. H., A. Feoktistova, L. Ren, S. Niessen, J. R. Yates, 3rd, and K. L. Gould. 2005. Dim1p is required for efficient splicing and export of mRNA encoding lid1p, a component of the fission yeast anaphase-promoting complex. Eukaryot. Cell 4:577-587.
- Nasmyth, K., and P. Nurse. 1981. Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast *Schizosaccharomyces pombe*. Mol. Gen. Genet. 182:119-124.
- 3. Urushiyama, S., T. Tani, and Y. Ohshima. 1996. Isolation of novel pre-mRNA splicing mutants of *Schizosaccharomyces pombe*. Mol. Gen. Genet. **253**:118-127.

- Schmidt, H., K. Richert, R. A. Drakas, and N. F. Käufer. 1999. *spp42*, identified as a classical suppressor of *prp4-73*, which encodes a kinase involved in pre-mRNA splicing in fission yeast, is a homologue of the splicing factor Prp8p. Genetics 153:1183-1191.
- Rosenberg, G. H., S. K. Alahari, and N. F. Kaufer. 1991. *prp4* from *Schizosaccharomyces pombe*, a mutant deficient in pre-mRNA splicing isolated using genes containing artificial introns. Mol. Gen. Genet. 226:305-309.
- Kim, D. U., J. Hayles, D. Kim, V. Wood, H. O. Park, M. Won, H. S. Yoo, T. Duhig, M. Nam, G. Palmer, S. Han, L. Jeffery, S. T. Baek, H. Lee, Y. S. Shim, M. Lee, L. Kim, K. S. Heo, E. J. Noh, A. R. Lee, Y. J. Jang, K. S. Chung, S. J. Choi, J. Y. Park, Y. Park, H. M. Kim, S. K. Park, H. J. Park, E. J. Kang, H. B. Kim, H. S. Kang, H. M. Park, K. Kim, K. Song, K. B. Song, P. Nurse, and K. L. Hoe. 2010. Analysis of a genome-wide set of gene deletions in the fission yeast *Schizosaccharomyces pombe*. Nat. Biotechnol. 28:617-623.
- Ohi, M. D., A. J. Link, L. Ren, J. L. Jennings, W. H. McDonald, and K. L. Gould. 2002. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel premRNA splicing factors, and snRNAs. Mol. Cell. Biol. 22:2011-2024.
- Perez-Iratxeta, C., and M. A. Andrade-Navarro. 2008. K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct. Biol. 8:25.