Supplemental material

TABLE S1 Oligonucleotides used in this work

RSP0035B	5' CGGAATTCGTGACCCCGAAAGGCAGCGAC 3'
ORF12	5' GCTCTAGACGTTCAGCGCCTCCACATGG 3
pRK6086 F	5' CGTCTAGAGTCACGCCGAAGGGCAGCGAC 3'
pRK6086 R	5' GCGAATTCCGTTCAGCGCCTCCACATGG 3'
pBADmyc6086SPS-fw	5' TAGAATTCGACAGCCCCGCCGTC 3'
pBADmyc6086SPS-rv	5' ATAAGCTTCCGGCCGGTCTCCA 3'
6086DHFW	5' CGGAATTCGCCGTCCGGGTCGAGGCCGA 3'
6086DHRV	5' CGCTGCAGGCCGGCCGGTCTCCACGAACTGC 3'
GAD6086Rv	5' ATCCCGGGGCCGGCCGGTCTCCACGA 3'
DH67CoilF	5' GAATTCCGCTCGGTCGCCGATCTGCGCGA 3'
pG67FCOOH	5' GAATTCACCGAGCTCGGCGAGGCCATCG 3'
RSP0067-GSTRvsSTOP	5' CCCGGGTCACGGATAACGGATCGGATTG 3'
ADBDmotB1	5' GCGAATTCTCGTTCAGCAAGATGGCGGGG 3'
ADmotB2	5' GCGAGCTCTCAGTCCTTGTAGGAAATCTC 3'

R.spha/1-361	1 V R R L L L L L A L L L A P L A A S A D S P A V R V E A E G F A M V A G P G D R D A A R R R A V S D A L L A SS
Va/1-377	1 M K K I L N S L F S I T L V M L V P F K V M A S WY E V T G V A T I V S S E E T A R L H A L E D A L
R.spha/1-361	56 AALAAGADV SGHTAVNRGIVT SDVAIVR SVGRILRHRIL SET LSGATWRVRIEALVGE 113
Va/1-377	53 AVNF SGADI - GSI SNLMPLLEESRNEYQFTNHEVRY - ILVESERKRRGKVEVKIRVDI 188
R.spha/1-361	1113 G P G P L - C P V R T L I V T A Y P A T L A V D P H A P A W S G E L A R T I A E R L V E R L A L H P A A S L S R V A 1703
Va/1-377	1139 Y P S A T G C H T D Q Y K K T I L V G N I E V A S P Q Q A V M G Q I Y Q V G D D F S R V V 153
R.spha/1-361	171 E R R P T R L G R G G E A F D Y Q S L T Q G S V R L P A N G H G F L P T I R L R R V 212
Va/1-377	158 N R Q L D Q T S R S F V S V G T T D Y S I S S N Y P A R T Q M I A Q D N G A Q Y I I G G V I T D L T A T V E S Q L L 211
R.spha/1-361	213 AGPRLELALELKLVAADGTASVQQ FVRRVPLPRPSLLGDLSVLVQPQREALA268
Va/1-377	212 QDDIINRQFALEMKVFDGKTGHEVFNKAYREVARWPFAKTSQVDTRSARFWASTYG267
R.spha/1-361	265 SALLEG SDRALDAL FDRAGCEPASARLVAA-GGLLEVPVGQANGLTPGSLA3113
Va/1-377	268 EMMLRVSRNIMLDLESELSCKITLPEVVAVFGNTVTMDLGRMHGVKEGDKLQLWHTAS325
R.spha/1-361 Va/1-377	315 FTADGGSTEI-LEIVALRSGSARLRPLDPTRPPAAFAGRRVQFVETGR 361 326 FIDQNGLPRNKVSQSEITLTVSRIYEHEAELTIDQPNLASSVQIGDVMNKIL 377

Suppl. Fig 1. Sequence alignment of FlgT from *Vibrio alginolyticus* with the gene product of RSP_6086 (FlgT_{*Rs*})

Suppl. Fig 2. Exponentially growing cultures of WS8 and FS3 were fractionated, and the supernatant and cell pellet were analyzed by Western blot using anti-FlgE antibodies.

Suppl. Fig 3. Presence of FlgT in total cell extracts from SP13 ($\Delta fleQ1$::Kan) and SP12 ($\Delta fleT1$::*aadA*) strains expressing *flgT* from *lacp* present in pRK415. Total cell extracts from WS8 and SF3 were used as positive and negative controls, respectively.

Suppl. Fig 4. GFP-MotF and GFP-FliL localization in SF3 strain. Representative images of GFP-MotF and GFP-FliL in WS8 and SF3 cells. Bar=1 µm. Cell contours are shown.