Supplemental Figures

Fig. S1

CAGAGUUCCGAACAUCACUGCCC UGUUGGUCGAUUCU GUGACGGU 3'UTR NAMPT miR-34a

Fig. S2

Fig. S3

Α

Rel mRNA level

1.2

0.9

0.6

0.3

0

Fig. S4

Fig. S5

Fig. S6

Primary mouse hepatocytes (HFD) Anti-miR-34a Anti-Sc control NAMP siRNA Ac-NF-κB NF-κB

Fig. S8

Fig. S10

Α 3 NAD⁺ (nmole/mg.protein) 2 0 AO 3AO 3AO d: thin shi sh Ad: Res (µM): 50 100

ig. S12	
---------	--

ND	HFD		
Saline	Anti-SC	Anti-miR34a	
<u>50μm</u>	К К К 50µт	<u>50μm</u>	

H&E

Fig. S13

Fig. S14

List of primer sequences of mouse metabolic genes for q-RTPCR

No.	Gene	Forward (5'-3')	Reverse (5'-3')
1	Nampt	CATAGGGGCATCTGCTCATT	GCTGCTGGAACAGAATAGCC
2	Sirt1	AGTTCCAGCCGTCTCTGTGT	GATCCTTTGGATTCCTGCAA
3	Ppar β/δ	AATGCGCTGGAGCTCGATGAC	ACTGGCTGTCAGGGTGGTTG
4	Ppar α	CGAGGTGAAAGATTCGGAAA	GGCCTTGACCTTGTTCATGT
5	Cpt-1	TCGAAACATCTACCATGCAGCA	CAGCATTCTTCGTGACGTTGG
6	Cytc	GGAGGCAAGCATAAGACTGG	TCCATCAGGGTATCCTCTCC
7	Mcad	GATCGCAATGGGTGCTTTTGATAGAA	AGTTGATTGGCAATGTCTCCAGCAAA
8	Srebp1c	GCTGTTGGCATCCTGCTATC	ATGCTGGAAGTGACGGTGGT
9	Dgat	TGGTGTGTGGTGATGCTGATC	GCCAGGCGCTTCTCAA
10	CD36	GCCAAGCTATTGCGACATGA	AAGGCATTGGCTGGAAGAAC
11	Vldl	GAGACCCTGACTGCAAGGAC	GCCGTGGATACAGCTACCAT
12	Bip	TCATCGGACGCACTTGGAA	CAACCACCTTGAATGGCAAGA
13	Chop	GTCCCTAGCTTGGCTGACAGA	TGGAGAGCGAGGGCTTTG
14	Calreticulin	TTACGCACTGTCCGCCAAA	GCTCATGCTTCACCGTGAACT
15	IL-6	AGAAGGAGTGGCTAAGGACCAA	AACGCACTAGGTTTGCCGAGTA
16	$Tnf-\alpha$	AGCCCCCAGTCTGTATCCTT	GGTCACTGTCCCAGCATCTT
17	Mcp-1	CAGCCAGATGCAGTTAACGC	GCCTACTCATTGGGATCATCTTG
16	36B4	CGACTCACAGAGCAGGC	CACCGAGGCAACAGTTGG

Fig. S15	List of primer	sequences of	f mouse genes for	semi-quantitative	ChIP assay
----------	----------------	--------------	-------------------	-------------------	------------

No.	Gene	Forward (5'-3')	Reverse (5'-3')
1	Sirt1	GTGTTGTGGTCCGGCCCGC	CTCCGCTCGACGCGCGGCACT
2	Nampt	GAGGATCGGAATCCACAAGA	GGACTGAGGAGGACGTGAG
3	Gapdh	AGTGCCAGCCTCGTCCCGTAGACA	AAGTGGGCCCCGGCCTTCTCCAT

640 Fi

Supplemental Figure Legends

Fig. S1. The 3'UTR of Nampt mRNA contains a miR-34a binding site. Alignments of the miR-34a sequence with the putative miR-34a binding site in the 3'UTRs of mouse Nampt mRNAs are shown. **Fig. S2. Effects of high fat diet on hepatic NAMPT expression.** Mice were fed normal chow (ND) or a high fat diet (HFD) for 16 weeks and hepatic NAMPT mRNA levels were measured by q-RTPCR analysis. Statistical significance was determined by the Student's t test (SEM, n=3, *p<0.05).

Fig. S3. Effects of miR-34a on NAMPT expression. (A) Primary hepatocytes were prepared from lean mice and infected with Ad-miR-34a or Ad-empty and 2 days later, mRNA levels of NAMPT were detected by q-RTPCR. (B) Mouse primary hepatocytes were treated with anti-miR-34a or scrambled RNA and 2 days later, NAMPT mRNA levels were detected. Statistical significance was determined by the Student's t test (SEM, n=3, *p<0.05, **, p<0.01).

Fig. S4. Effects of in vivo silencing of miR-34a on NAMPT mRNA levels. Mice were fed normal chow (ND) or a high fat diet (HFD) for 16 weeks and injected via the tail vein with saline, control RNA, or anti-miR-34a oligonucleotides three times at 4-day intervals, and hepatic mRNA levels of NAMPT were detected by g-RTPCR. Statistical significance was determined by the Student's t test (SEM, n=5, *p<0.05, **, p<0.01).

Fig. S5. Effects of downregulation of SIRT1 by siRNA on acetylation of NF-kB. Primary hepatocytes were prepared from diet-induced obese mice and treated with anti-miR-34a or scrambled RNA and then, further treated with control scrambled RNA or SIRT1 siRNA and acetylation levels of NF-kB were detected by IB using acetylated NF-kB (3045) from Cell Signaling Technology. Total NF-kB levels were detected by IB using NF-kB (sc-109R) from Santa Cruz Biotechnology.

Fig. S6. Effects of Ad-miR-34a on expression of FA transport genes. Lean mice were infected with Ad-miR-34a or Ad-empty and 1 week later, mRNA levels of FA transport genes were detected by q-RTPCR. Statistical significance was determined by the Student's t test (SEM, n=5, **, p<0.01).

Fig. S7. Effects of Ad-miR-34a on glucose tolerance. Lean mice were infected with Ad-miR-34a or Adempty and 1 week later, glucose tolerance test (GTT) was performed. Statistical significance was determined by the Student's t test (SEM, n=5, **, p<0.01).

Fig. S8. Effects of Ad-miR-34a on liver staining by H&E. Lean mice were infected with Ad-miR-34a or Ad-empty and 1 week later, H&E staining of liver tissue was performed.

Fig. S9. Effects of treatment with NMN on NAD⁺ levels. Primary hepatocytes were prepared and infected with Ad-empty or Ad-miR-34a and then, treated with NMN as indicated. Cellular NAD+ levels were

measured. Statistical significance was determined by the Student's t test (SEM, n=3, *p<0.05; **, p<0.01). **Fig. 10. Effects of treatment with FK866 on cellular NAD**⁺ **levels.** Primary hepatocytes were prepared and infected with Ad-empty or Ad-miR-34a and then, treated with FK866, an inhibitor of NAMPT, as indicated. Cellular NAD+ levels were detected.

Fig. S11. Effects of treatment with resveratrol on NAMPT protein and NAD⁺ **levels.** Primary hepatocytes were prepared and infected with Ad-empty or Ad-miR-34a and then, treated with resveratrol as indicated. Cellular NAMPT protein and NAD+ levels were detected. Statistical significance was determined by the Student's t test (SEM, n=3, *p<0.05; **, p<0.01).

Fig. S12. Effects of anti-miR-34a treatment on liver fat accumulation and macrophage infiltration. Mice were fed normal chow (ND) or a high fat diet (HFD) for 16 weeks and injected with saline, control RNA, or anti-miR-34a three times at 4-day intervals, and treated with control RNA or anti-miR-34a and H&E staining was performed to detect liver histology. Infiltrated macrophages are indicated by arrows.

Fig. S13. Effects of anti-miR-34a treatment on serum AST/ALT levels. Mice were fed normal chow (ND) or a high fat diet (HFD) for 16 weeks and injected via the tail vein with saline, control RNA, or anti-miR-34a three times at 4-day intervals, and treated with control RNA or anti-miR-34a and serum AST and ALT levels were measured by ELISA.

Fig. S14. Primer sequences for q-RTPCR analysis are shown.

Fig. S15. Primer sequences for semi-quantitative PCR for the ChIP assays are shown.