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ABSTRACT The purpose of the present communication has
been to present the derivation of the vibrational relaxation rate
constant for the case in which both phonons and the molecular
rotation (three-dimensional) participate in the vibrational re-
laxation and to study the effect of molecular rotation on the
vibration-vibration energy transfer in the condensed phase. The
experimental results of vibration-vibration energy transfer
between donors, NH and ND, and acceptors, CO and 13CO, have
been analyzed.

A theoretical model was presented for the vibrational energy
transfer between the excited donor D and the unexcited ac-
ceptor A for the case in which both A and D are polar (1). It has
been shown that the rate of vibrational energy transfer Kda(T)
is related to the rates of vibrational relaxation of D and A, KD(T)
and KA(T), by

IH(2)A 2KD(T)da + IH'(2)D12KKda(T) = hw D(~a KA(T)da, [1]

where KD(T)da and KA(T)da denote the vibrational relaxation
rate constants of D and A with the energy gapCWD - WA, the
energy mismatch between D and A. H'(2)A12 and H'(2)D12
are defined by

IH'(2)A 12 - 3 R6AA

IH'(2)D12 - AIAIiI2 [2]

where

MD= AD + _DQD +.; -A = HA+ AQA + [3]

In deriving Eq. 1, the second order time-dependent pertur-
bation method has been used to describe the dipole interaction
between D and A and the coupling of D and A with the heat
bath so that the excess vibrational energy can be given up to the
heat bath. In this communication, we shall apply the energy
transfer rate expression Kda(T) given by Eq. 1 to the experi-
mental results of the energy transfer between donors NH and
ND and acceptors CO and 13CO in the rare gas matrices (2).
It will be shown that in this case the rotational motion of NH
or ND is important in accepting the energy mismatch between
D and A in the vibrational energy transfer. The importance of
molecular rotation in vibrational relaxation in condensed media
has been pointed out by Brus and Bondybey (3), Legay (4),
Freed et al. (5), and Berkowitz and Gerber (6).
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GENERAL CONSIDERATION
From Eq. 1 we can see that Kda(T) is related to the vibrational
relaxation rate constants KD(T)da and KA(T)da. If the vibra-
tional relaxation is induced by a repulsive potential to describe
the interaction between the molecular vibration and medium
vibrations, then the vibrational relaxation rate constant, say for
the donor D, KD(T)da is given by

KTda=h(WD - WOA) 2Zj(wOD - COA)
(WD OA) I(CD - WA)

x exp [- _5 1 +SD, [4]

where wi represents the average frequency of phonons, SD is the
coupling constant, and C'D represents the force acting on the
molecular oscillator by the medium (1, 4, 7). In Eq. 4, KD(T)da
is expressed in the energy gap law form at T = 0. A general
expression for KD(T)da has been observed. It has been shown
that at low temperatures the rate of vibrational relaxation is
insensitive to temperature (4). Thus, for our purpose, the ex-
pression for the vibrational rate constant at T = 0 is suffi-
cient.

As mentioned above, the molecular rotation has been shown
in many cases to be important in accepting the vibrational ex-
citation during vibrational relaxation. In treating the rotational
effect, Freed et al. (5) have regarded the molecular rotation as
a planar rotator and, for the interaction between the molecular
vibration and rotation, they have used

H' = XDVO exp(a cos no), [5]
where XD represents the displacement of molecular vibration,
0 is the rotation angle, and Vo, a, and n are constant. By using
Eq. 5, the expression for the vibrational relaxation rate constant
can easily be derived (5, 8). For example, in the free rotator
approximation and at T = 0, we find

V02
KD(O)da = 2hAWD(OD -COA)

X exp V-\D/ - (log2 V D -WAl)J [6]
n WrD nao U rD

where WID = h/2ID and ID is the moment of inertia of the
donor D. Eq. 6 describes the experimental finding of the inverse
deuterium effect and the energy dependence quite well.

THREE-DIMENSIONAL ROTATIONAL EFFECT
For simplicity we consider the system to consist of diatomics
dissolved in monatomic crystals; the interaction between the
host atom and guest atom is assumed to be of the Morse type (see
Fig. 1).
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FIG. 1. Coordinate systems.

V = DB1
where

-e-aB(XB-rBso)2 + Dctl - e-ac(xc-rco)12,

X2 2r2 + 2 -2X

[7]

and
X2 =r2(1-a)2 +X2+2Xr(l-a) cos 6 [9]

with a = mC/(mB + mc).
When X > r, Eqs. 8 and 9 can be approximately expressed

as

XB =X{1 -aj Cos6+ [10]

and

Xc=XI1 +(1-a)(jcos5 + . .}(9). [11]

If we let r = ro + Ar where Ar represents the displacement
of the diatomic molecule, then by expanding V in power series
of Ar and collecting the linear terms we find the perturbation
for vibrational relaxation as

HI = H'(R) + f'(A), [12]

where Hf'(R) denotes the contribution from the repulsive por-
tion of V, and Hf'(A) represents the attractive contribution from
V. They are given by

fl'(R) = 2aAr E cos An
n

aBDBe 2aB(Xn-rBo)e2aBaToCOS6n- ac (1-a)
a

X e-2ac(Xn-rco)e -2ac(1-a)rocosbn} [13]

and

17'(A) = 2aAr cos n
n

X aBDBe aB(Xn-rBo)eaBaroCoSn+ acD a)at

X e ac(Xntrco)eac(-)rocos n} [14]

Here the contribution from all over the host atoms has been
taken into account by the summation over n.

Using H' given by Eq. 12, the rate constant of vibrational
relaxation can be calculated

k(T) = EEiPjt (1fvUH'I v'bI2

X b(hw + E1, - E1,'j) [15]

for the transition 1 - 0 of the diatomics, where fvi, $v'}are the

quantum numbers of the accepting degrees of freedom and w
is the frequency of the molecular vibration. It is commonly
believed that the repulsive portion H1'(R) is more important in
vibrational relaxation than H'(A); so tentatively we shall ignore
the contribution from 1'(A). Using the relation (10)

e2aBaroCO>n = a (2J + 1)jj(2aaBr0)PJ(CO`S 6n), [16]
j=o

we find

1'(R) = 2aAr a, F Fj(Xn)n(2J + 1) cos &nPj (cos sn),
n J=O

[17]
where jj(y) is the Bessel function and

Fj(XY )n = aBDBe-2aB(Xn-rBo)jJ(2aaBro)
- a) acDce-2ac(Xn-rco) X (-1)Jjj(2ac(1 - a)ro). [181a

By expressing Pj(cos An) in terms of spherical harmonics
YJM (On(n) and YJM (8X), Eq. 17 becomes

H'(R) = 2aAr F, E Fj(Xn)n(J + 1)Pj
n J
+ 1 (cos an) + JPJ-1 (cos an)}

= 87raAr E E Fj(Xn)n
n J=O

jJ+1I J±' Y+(Olf)Y~+1M(Ok)
ISL + 3 M=-E-1Y+ M(i In);1()

SM=J-1
+ FY-MO~)j1O)-[19]
2J - 1 M=-J+1 J nnilj.

This expression is convenient for studying the participation of
molecular rotation in vibrational relaxation. It should be noted
that Fj(Xn)n will provide the coupling between the molecular
vibration and the translation of the guest molecule and the vi-
bration of host atoms; in other words, H'(R) can provide us the
information about the separate amount of the vibrational ex-
citation going into molecular rotation and other degrees of
freedom.
To be able to proceed with the derivation of k(T), it is nec-

essary to know the potential function for the molecular rotation.
For simplicity, we shall assume that the rotation is free; for low
barrier cases, this at least will provide us the zeroth order ap-
proximation. In this case, Eq. 15 can be written as

kR(T)=- E Eh JM)VI J'M'Iv'I

X PjVj (lJMlvl I I 1'(R)| OJ'M'$v' I) 12
X b(hcw + Ejjtv - Ej'1v ), [20]

where

(1JMjvIIH'(R)IOJ'M'Iv'f) = 811a (liArlO) E E ({V}
n J'=O

X Fj (Xn)nItv'b(JM J+ 1 Z
2J"' + 3 M=J-

X Yjt+ 1M"(O8n n)Yy+ lM"(-0)

+ Yyf-iM"f
2J" - 1 M"=-J" + 1

X (0n an)Y*;--IMu(00()|J'M ' ) * [al]

Let us first consider the case T = 0. In this case, we are con-
cerned with the calculation of
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(lOOfvl I fI'(R)I OJ'M'$v'I)

= 2ax/4 ( IArI0) E' ($vjIFj'- I(Xn)n I vj)

+ IJ + 1 ($vIlFj'+i(Xn)nllvI) Yj',(On~ n) [22]
2J + 1

In Eq. 22, the terms involved Fj'-i and Fj+, will describe the
energy of vibrational excitation relaxed into the molecular
translation and host phonons. For comparison with the two-
dimensional rotator model of Freed et al. (5), we shall consider
the case in which Xns are not displaced; Eq. 22 then reduces
to

(100lvIIf|'(R)I OJ'M'iv'j )

= 2ax/4 (ilArlO) fJ'fj1,IIJ'M', [23]

where

fj~lvllv=fv~lfv'10 2J 1 Fj'i_(X)
2T +JI+

+
J + 1 Fj + 1 (X)i [24]2Jn+ I

and

J'M' = E YJ'M'(n an) -

n

Substituting Eq. 25 into Eq. 20 yields

[25]

k() =327r2a2kR(°) = h |(1 Ar 0) I21ojoi iIJ'M' 2p(Ej,),

[26]
where hw = Er' and the. density of states p(Ej') is given by

2j1+ 1) 21 21 1
')2 7h2Ej, h2 hOr

To find the analytical expression for kR (0) given by Eq. 26, we
use the approximate relation

z2

ji(Z)=(2z1 J!1+ +23
(2j )J. 212+

2!(2j + 3)(I] + 5)
j.

[27]

It follows that

fJ'foJIoj = aBDBe-2aB(X-rBo)

X 12J l jJ'-1(2aaBro) + 2J' + 1 jJ+1

X (2aaBro)} (1 a) aDce-2ac(X-rco)(-1)J'+1
at

x Ij'-1(2a,(l - a)r.) + V+ I
L2JX+1 2]' + 1

X Ij'+1(2a,(l ar, [28]
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or

fJ'lollol aBDBe-2aB(X-rBO)

(1-a) acDce-2ac(x-rco)(-1)J'+1l

a

X 12J+ 1 jj'_1(2adro) + 2J, + 1 jj'+j(2adro). [29]

In Eq. 29 an average quantity a- has been introduced for aB and
ac.

Using Eqs. 27 and 29, we obtain
32ira2kR(°)= h2 | (I1 ArI 0)2 Gj,

2a ro) J'!. -(4adro)J']2 30X (4daro)2 I (2j'-)! } [30]

where
(1a)

Gj' = aBDBe -2aB(X-rBO) + acDc(- 1)Te -2ac(X-rco)

[31]
or

167ra2 2 2aa j'! (4adro)JT1
kR(0) G+ail_

Mh
) wr (4daro) [ (2J' 1)! 1

[32]
where ,u is the reduced mass of the diatomics. Eq. 32 can be put
in the modified energy gap law form

2ira2 2(1 a2r22kR(0) = h- G -2- J(J' + 1)yhW~fir (JartO)2
X exp j-2J'$log J'-log (dear0)8, [33]

which should be compared with the result of the two-dimen-
sional rotator model

V02
k(0) =I2pWD(CD- A)

Xexp
2

CO -CA log CO D [34]

n l/)rD {Igno \/WrD ) [4

APPLICATION
To show the application of the theoretical result to experimental
data, in Table 1 we reproduce the experimental results for the
energy transfer between NH and ND and 12CO and "3CO ob-
tained by Goodman and Brus (2). For the first three sets of data
in Table 1, they are able to fit them with the energy-gap law
expression (see also Fig. 2):

Ket (30 A) = 9.9 X 104 exp(-AE/28 cm-l), [35]
where 30 A represents the intermolecular distance between the
excited donor and acceptor. From Eq. 1, we can see that for the
theoretical purpose it is required to have knowledge of -A0, MA',
MD0, and MD'. Both MAA and MA are known for CO (11) but only
MDo is known for NH (A37r) (12). To estimate MD' Goodman and
Brus (2) assumed that MD0 and MD' have the same relative

Table 1. Experimental results

Processes AE, cm-' Ket (30 A), secI

ND (v = 2)- 13CO 13 1.26 X 105
ND (v = 1)- 12CO 78 6.50X 103
ND (v = 1) 13CO 126 1.23 X 103
NH (v = 1) 12CO 729 5.2X 10
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FIG. 2. Energy-gap law fitting of experimental results.

magnitude in NH (A37r) as they do in HF, where both have
been measured (13, 14), and obtained (2).

AD = 6.24 X 10-18 + 3.2 X 102 Q ESU-cm, [36]

where Q has units of x'j cm. 4A- and HA- are given by (2,
11)

/AA = 0.54 X 10-18 + 4.42 X 102 Q ESU-cm. [37]
By using these values, Eq. 1 for the ND* case becomes (2)
Ket (30 A) = 3.05 X 10-8KND(AE)

+ 1.03 X 10-10 Kco(AE). [38]
In view of the recent experimental results on the CO system (4,
15), the second term is negligible. By using this fact and the
energy-gap law expression for KND(AE) (1, 7, 16), Eq. 35 can

be deduced from Eq. 38. For the process NH(v = 1) 12CO,
correcting for the isotope effect yields S 0.1 and U - 100
cm-1 from which Eq. 35 gives Ket (30 A) 1.0 X 10-7 sec-1
which should be compared with the experimental value of 5.2
X 10 sec. In other words, the use of KND(AE) or KNH(AE)
based on the multiphonon relaxation is incapable of interpreting
the experimental results.

Next we consider the case in which we use the expression for
KND(AE) or KNH(AE) based on the rotational participation
model. In this case, we expect that the plot of log Ket(R) vs.

/I(Dj-7A)/W should be approximately linear. This is shown
in Fig. 3. From Fig. 3 we can see that the linearity holds well
for the four sets of the vibrational-vibrational energy transfer
data. Notice that in Fig. 3 the last set of data in Table 1 is not
corrected for the isotope effect; this can be done by subtracting
the value in Fig. 3 by 0.347. That only brings the point above
the line slightly down below the line. In other words, the lin-
earity still holds well.

102-
A

200 400 600
AE, cm-'

FIG. 3. Rotational effect on vibrational-vibrational energy
transfer. *, ND* - CO; A, NH* - CO.

For the quantitative purpose, we shall express Eq. 1 with the
neglect of the second term in Eq. 1 as

log Ket(R) = log A - log -_

WL)r fl Wr

x (Ilog4 -log nae) [39]

where Au = D- WA and A = H'(2)AI 2/hcAA3_Vo2/2.UDh-
WDW,. In analyzing the rotational effect on the vibrational re-
laxation, Freed et al. (5) find that for n = 4, a = 0.70. By using
these values and wr(HD) = 8.33 cm-1 from Legay's paper (4),
we obtain log A = 10.79. From A, the V0 value can be deter-
mined.

As has been pointed out above, in our case of interest here,
Eq. 1 takes the form,

Ket(R) I H/(2)A 12 KD(AE).hCOA3 [40]

In other words, from Ket(R) we can determine KD(AE) and
vice versa. Now we shall use Eq. 40 to predict the vibrational
relaxation rate constant for donors ND and NH. For ND, we
have WD = 2217 cm-',Yt7 = 16.30 and KND(2217) = 1.6
X 104 sec1; the experimental result is KND(2217) < 104 sec1.
Similarly, for NH we have WD = 2977 cm-1, x D74 = 14.28,
and KD(2977) = 1.6 X -105, whereas the experimental result (17)
is KD(2977) = 1.2 X 106 sec-1. In the second case, there exists
one order of magnitude discrepancy. In other words, for small
energy-gap cases, the excess energy will almost completely relax
into the rotation first, but for the large energy-gap case, a
considerable amount of excess energy will simultaneously relax
into the phonon bath. Furthermore, it should be noted in Eq.
40 that it has been assumed that the rotation is free. This may
cause some error.
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