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DETAILED DERIVATION OF EQUATIONS

We begin with a configuration model network, and con-
sider two infectious diseases which infect nodes of the
network. We assume infection by either disease confers
immediate and complete protection from any future in-
fection by any disease. We index the diseases by 1 and 2.
Individuals infected by disease i = 1, 2 transmit to their
partners at rate βi, and recover at rate γi.

We assume that at the initial time t0 enough individu-
als are infected that the disease spreads deterministically
(at the aggregated population-level), and that the prob-
ability an individual of degree k is initially infected is
S(k, t0). We must make an assumption about which in-
dividuals are initially infected. Namely, if we consider an
initially susceptible individual u, no information we have
about u at time t0 tells us anything about the status of
its partners. This assumption is satisfied if we initially
infect a random subset of the population, or even if the
disease has been spreading for some time before t0. This
assumption is violated if we select high-degree individuals
and preferentially infect their partners.

The test individual

We now introduce the concept of a test individual. This
concept is described in more detail in [1], and it allows
us to simplify our calculations.

We modify the test individual by not permitting trans-
mission from u to its partners. Without this assumption
infection could spread from one partner v to u to another
partner w. This would introduce correlation between v
and w which is mediated through u. By preventing trans-
mission from u we eliminate this correlation and we can
treat the partners of u as independent. The justifica-
tion for this is described below, but can be understood
in part by analogy with the “price-taker” assumption of
economics. A price-taker is a firm which produces insuffi-
cient amounts of some product to have any impact on the
market price. As such, we can simplify a mathematical
analysis of such a firm by explicitly ignoring the impact
it has on the market. Here the test individual has no
impact on the broader dynamics and modifying its local
effect still has no impact on the broader dynamics. Thus
we might as well assume that it has the simplest possible
local effect for our analysis. We expand this argument
below.

Whether a given individual u is infected at any given
time is a random variable. However, if we make the as-
sumption that the disease spreads deterministically at

the aggregated population-level, then whether or not a
given individual is infected at any given time cannot have
any impact on the aggregated scale. If it did, there would
be stochastic effects visible at the population scale.

This observation allows us to decouple the status of u
from the dynamics of the epidemic in the sense that we
can ignore any feedback from u on the epidemic. To make
this mathematically rigorous, we simply allow u to be-
come infected and for its infection to proceed as normal,
but we disallow any transmission from u to its partners.
This keeps the status of partners of u independent.

The probability that u is susceptible equals the prob-
ability that none of its partners has transmitted to it
(under the assumption u does not transmit to its part-
ners). To calculate the proportion of the population that
is susceptible, infected, or recovered, we assume that u
is randomly selected from the population and prevented
from infecting its partners. We call u a test individual.
The probability u has a given status equals the propor-
tion of the population that has that status.

Deriving the flow diagrams

We define θ(t) to be the probability that a random
neighbor of u which had not transmitted to u by time
t = t0 still has not transmitted by time t. Then if u
has degree k, the probability it was initially susceptible
is S(k, t0), and the probability it is still susceptible is
S(k, t0)θ(t)k. Averaging over all possible values of k, we
have

S(t) = ψ(θ(t)) =
∑
k

P (k)S(k, t0)θ(t)k

The value of S reduces over time as infections occur.
Mathematically this appears as a reduction in θ. We
must calculate how quickly θ changes, and how much of
that change is due to each disease. This will allow us to
calculate how much of the reduction in S should go into
each disease’s infected class.

We now look for the change in θ. We define v to be a
random neighbor of u which had not transmitted to u by
t0. Then θ is the probability v has not transmitted to u
by time t. As our initial condition, we have θ(t0) = 1. We
divide θ into four compartments. We take φS to be the
probability that v is still susceptible, φI,1 the probability
v is infected with disease 1 but has not transmitted to
u, φI,2 the probability v is infected with disease 2 but
has not transmitted to u, and φR the probability that v
is recovered (from either disease) and did not transmit
during infection. These add up to θ: θ = φS + φI,1 +
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FIG. 1. Flow diagram that leads to the evolution of θ. A
label along an edge gives the flux of probability along that
edge.

φI,2 + φR. The probability that v has transmitted to u
is 1 − θ. The flow between these compartments is shown
in figure 1.

We first find the rate of change of θ. It is relatively
straightforward to see that

θ̇ = −β1φI,1 − β2φI,2

This is because the only path for θ to decrease is through
v transmitting to u, which requires that v be infected
(and not yet transmitted to u).

At t0, we have φS(t0) is the probability a random
neighbor of u is still susceptible (given that it has not
transmitted to u). We take this as an input value. The
value of φI,1, φI,2, and φR are similarly all input from the
conditions at t0. We can explicitly calculate the value of
φS at later times, if we know θ. To do this, we find the
probability distribution for degree of v, and then calcu-
late the probability that no neighbor of v has transmitted
to v.

At time t0, the edge joining u to v is simply an edge
from u to a random neighbor that is susceptible. The
probability that edge connects to a degree k individual is
proportional to the number of edges that all susceptible
individuals of degree k have, NkP (k)S(k, t0). The nor-
malization factor is the total number of all edges of sus-
ceptible individuals,

∑
k′ Nk′P (k′)S(k′, t0). The proba-

bility that v is still susceptible at time t is θ(t)k−1. So the
probability of having a degree k susceptible neighbor at
time t is NkP (k)S(k, t0)θ(t)k−1/

∑
k′ Nk′P (k′)S(k′, t0).

Summing over all possible k, and cancelling N , we ar-
rive at

∑
k kP (k)S(k, t0)θ(t)k−1/

∑
k′ k′P (k′)S(k′, t0) =

ψ′(θ(t))/ψ′(1). So given that v is initially susceptible,
the probability that v is susceptible at a later time t is
ψ′(θ(t))/ψ′(1). Since the probability v is initially suscep-
tible is φS(t0), we conclude

φS(t) = φS(t0)
ψ′(θ)

ψ′(1)

The rate of change of φS is simply φS(t0)θ̇ψ′′(θ)/ψ′(1). It
is straightforward to see that the amount that goes from
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FIG. 2. Flow diagram leading to equations for the proportion
of the population in each compartment.

φS to φI,1 is φS(t0)β1φI,1ψ
′′(θ)/ψ′(1) and the amount

going into φI,2 is β2φI,2ψ
′′(θ)/ψ′(1).

So in figure 1, we have expressions for the flux along
each edge except the edges into φR. These edges are
straightforward, because the recovery rate for disease 1
is γ1 and the recovery rate for disease 2 is γ2. So the
total flux from φI,1 to φR is γ1φI,1 and the flux from φI,2
is γ2φI,2.

Using the flows in figure 1, we can arrive at a coupled
system for θ, φI,1 and φI,2. It is

θ̇ = −β1φI,1 − β2φI,2

φ̇I,1 = −(β1 + γ1)φI,1 + β1φI,1φS(t0)
ψ′′(θ)

ψ′(1)

φ̇I,2 = −(β2 + γ2)φI,2 + β2φI,2φS(t0)
ψ′′(θ)

ψ′(1)

with θ(t0) = 1 and φS(t0), φI,1(t0), and φI,2(t0) given by
the initial state of the population.

These equations govern the spread of the disease
through the network. However, they are not the usual
variables of interest. Typically we want to know the
proportion susceptible, infected, or recovered. Figure 2
shows a flow diagram governing the proportion of the
population in each state. We can use this to recover S,
I1, I2, R1, and R2. As we noted above, S(t) = ψ(θ).
The flux into I1 can be calculated to be β1φI,1ψ

′(θ), and
the flux into I2 is β2φI,2ψ

′(θ). The fluxes from each of
these into the recovered states are γ1I1 and γ2I2. We
distinguish the two recovered states because we will fre-
quently be interested in the total proportion infected by
each disease. We could have similarly subdivided φR into
two compartments, but it would not provide any infor-
mation that is useful here.
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Thus our final system of equations is

θ̇ = −β1φI,1 − β2φI,2

φ̇I,1 = −(β1 + γ1)φI,1 + β1φI,1φS(t0)
ψ′′(θ)

ψ′(1)

φ̇I,2 = −(β2 + γ2)φI,2 + β2φI,2φS(t0)
ψ′′(θ)

ψ′(1)

S = ψ(θ)

İ1 = β1φI,1ψ
′(θ) − γ1I1

İ2 = β2φI,2ψ
′(θ) − γ2I2

Ṙ1 = γ1I1

Ṙ2 = γ2I2

REGIME ANALYSIS

There are several regimes that can be identified. When
the cumulative number of infections is small enough that
S and φS are approximately 1, then we can neglect non-
linear terms. Which regime is observed is determined by
the relative sizes of the two epidemics when the linear
approximation breaks down. We focus our attention on
regimes for which the linear approximation is valid at the
initial time.

When the initial condition is small, the linear terms
dominate and the epidemics grow (or decay) exponen-
tially. The equations governing the epidemics are un-
coupled in this regime. Physically, this means that com-
petition for nodes is so weak that it can be neglected.
In fact a stronger statement is true: in addition to not
having inter-disease competition, there is no intra-disease
competition: a transmission path is very unlikely to en-
counter a node infected along another transmission path.

Assume that the exponential growth rates of the two
diseases are r1 and r2, with r1 ≥ r2. This continues un-
til one of them becomes large enough that competition
begins to appear. At this point the growth of both epi-
demics starts to slow. If the difference in epidemic sizes
is large enough at this point, then this first epidemic
will not be slowed by the much smaller other epidemic.
The dynamics will proceed as if there were just one dis-
ease spreading. Eventually the susceptible population
will decrease, the disease will peak and eventually decay
away, all with the second disease negligible. Once this
decay has occurred, there will be a “residual” network.
The second disease will continue to spread along this net-
work. If the residual network is well enough connected
(and the second disease sufficiently infectious), the sec-
ond disease can continue to grow, and then it experiences
its own epidemic.

If the diseases are close enough in size when nonlinear
terms become important, then both diseases contribute
a nonnegligible amount to reduction in S and φS at the

same time. Thus they interact dynamically. Each dis-
ease contributes in a nonnegligible way to hindering the
spread of the other. To determine whether this can hap-
pen, we use a simple balance based on the initial sizes
and the early growth rates. Typically we might expect
that one disease becomes large while the other is still
exponentially small.

If one disease is sufficiently small when the other dis-
ease becomes large, then the larger disease will spread
and cause an epidemic that is effectively the same size as
it would be in the absence of the smaller disease. Using
the initial sizes and growth rates, it is straightforward to
calculate the sizes of the two diseases once nonlinearities
begin to be significant. For the two diseases to not inter-
act, the “smaller” disease must remain negligibly small
until the “larger” disease has finished its epidemic. We
derive slightly different thresholds for the case where the
smaller disease is the fast-growing disease or the slow-
growing disease. To derive the threshold condition, we
make a crude assumption that the two diseases continue
spreading according to the exponential growth rate. In
the nonoverlapping regimes, the smaller disease must re-
main small throughout the spread of the larger disease.
We crudely choose to apply our conditions when the ex-
ponential growth implies that the larger disease would
have reached size 1. We look at the size of the smaller
disease (assuming exponential growth) at this time. For
a given observed size for the smaller disease, we reach
different conclusions if it is the fast or the slow growing
disease. If it is the fast-growing disease, and we observe
0.05, then that means that at previous times it was much
smaller, and so we would not expect to observe any im-
pact. On the other hand if it is the slower-growing dis-
ease, and we observe 0.05, that means for much of the
spread of the larger disease it was at about that size, and
so we would expect to observe some impact. So if the
fast-growing disease is the small disease, we allow it to
be as large as 0.05 when the slow disease would reach
1. If the slow-growing disease is the small disease, we
require that it be much smaller, choosing 0.0025 = 0.052

instead. Our choice of threshold is somewhat arbitrary,
and influenced by the fact that ln 0.05 ≈ −3 giving a
simple expression for our thresholds. Taking this, we can
derive the Cmin ≈ −6 and Cmax ≈ 3r2/r1 thresholds in
the text.

Taking ρ1 and ρ2 to be the proportions initially in-
fected with each disease (at random). So long as C =
ln ρ2 − (r2/r1) ln ρ1 is not between −6 and 3r2/r1, then
the two diseases will not interact dynamically. One dis-
ease will become large and run through its entire epi-
demic prior to the other disease (possibly) having its
own epidemic. This defines the “nonoverlapping” epi-
demic regimes. If C lies within this range, then we have
the overlapping epidemic regime.
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FIG. 3. The flow diagrams underlying the spread of an infec-
tious disease in the presence of a behavior change. We assume
behavior change can be triggered by contact with an infected
individual or with an individual who has already adopted the
change. We assume behavior change provides complete im-
munity to disease.

IMPACT OF BEHAVIOR CHANGE

We now consider the spread of a single disease through
a network, which can be prevented with a behavior
change. We assume that the behavior change gives com-
plete protection from infection. Once an individual has
adopted the behavior change, the change is permanent.
An individual who has changed behavior will transmit
that behavior change to partners.

The disease transmits at rate β and recovery occurs
at rate γ. Contact with an infected individual causes
behavior change at rate δD. Contact with an individual
whose behavior has changed causes behavior change at

rate δB . The flow diagrams are shown in figure 3. The
resulting equations are

θ̇ = −(βD + δD)φD − δBφB

φ̇B = (δBφB + δDφD)φS(t0)
ψ′′(θ)

ψ′(1)

φ̇D = βDφDφS(t0)
ψ′′(θ)

ψ′(1)
− (βD + δD + γ)φD

İ = βDφDψ
′(θ) − γI

Ḃ = (δBφB + δDφD)ψ′(θ)

Ṙ = γI

S = ψ(θ)

The early growth of φD is exponential with rate
βDφS(t0)ψ′′(1)/ψ′(1)−(βD+δD+γ). If δD is sufficiently
large, the infection decays. This corresponds to a balance
between transmitting disease prior to either recovering
or transmitting behavior change. When the transmission
probability is small enough a typical infected individual
causes fewer than 1 new infection and the disease must
die out.

Changing δB does not alter the early growth rate of the
disease. So we might anticipate that the disease will be
able to cause a large scale epidemic. However, if δB > 0,
the behavior change itself also leads to an “epidemic”.
If the behavior growth rate is sufficiently large, its “epi-
demic” occurs while the disease epidemic is still expo-
nentially small. In this limit, the behavior change will
dominate the population, and the disease remains expo-
nentially small. We do not see the complementary case
in which the disease becomes large while the behavior
change is exponentially small, because as disease inci-
dence increases it directly induces behavior changes. So
either the behavior change has its “epidemic” first, or the
two have overlapping “epidemics”.
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