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1. Protein Modification Protocols
1.1 Tyrosine Nitration.

Azurin proteins containing a single, surface exposed, tyrosine are readily nitrated using a
slightly modified literature procedure.”’ A septum-capped Schlenk flask was charged with 30 mL
of approximately 250 pM solution of azurin in 25 mM sodium phosphate buffer at pH 8. The
solution was deoxygenated with several gentle pump-argon backfill cycles. A freshly prepared
solution (19 mL) of 1% v/v tetranitromethane (Sigma-Aldrich) in absolute ethanol was added
dropwise to the protein solution. The solution was stirred for 3 hours, changing from the
characteristic blue color of azurin to a deep green. The protein solution was concentrated using
ultrafiltration and desalted into 10 mM Tris buffer at pH 9 using a PD-10 column (GE
Healthcare). The protein was FPLC purified using a Q-HP column (GE Healthcare) and eluting
with a NaCl gradient. Purity was assessed using UV-vis spectroscopy and mass spectrometry.
Isolated yields of > 90% are based upon comparison of total protein by UV-vis before and after
nitration (ee30(Cu™*") = 5600 M~ cm ).

1.2 Ruthenium Labeling.

Ru-labeling of azurin was performed using a slightly modified literature procedure.>
NO,YOH-modified azurin was exchanged into 300 mM NaHCO; buffer to give a final
concentration of 300 uM (10 mL, ~50 mg). Freshly dissolved Ru(2.2"-bipyridine),COs> (1.1
equiv. in 300 mM NaHCO3) was added and the resulting purple solution was allowed to react for

several hours overnight at room temperature to yield a green solution. The protein solution was

(S1) Lee, J. C.; Langen, R.; Hummel, P. A.; Gray, H. B.; Winkler, J. R. Proc. Natl. Acad. Sci.
U.S.A.2004, 101, 16466-16471.

(S2) Faham, S.; Day, M. W.; Connick, W. B.; Crane, B. R.; Di, B., Angel J.; Schaefer, W. P.;
Rees, D. C.; Gray, H. B. Acta Cryst. D 1999, 55, 379-385.

(S3) Johnson, E. C.; Sullivan, B. P.; Salmon, D. J.; Adeyemi, S. A.; Meyer, T. J. Inorg. Chem.
1978, 17,2211-2215.
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concentrated using ultrafiltration and desalted into 10 mM Tris buffer + 1 M NaCl at pH 8 using
a PD-10 column (GE Healthcare). Modified and unmodified azurin were separated using a Hi-
Trap Chelating column (GE Healthcare). Replacement of the water molecule coordinated to
Ru(2,2"-bipyridine)(HisX) (X = 107, 124, 126) was achieved by exchanging the protein into 500
mM imidazole, 100 mM NaCl and 1 mM CuSO,4 at pH 7.5. The protein was incubated a room
temperature for 3-5 days and purified using a Q-HP column (GE Healthcare) and eluting with a
NaCl gradient. Proteins were stored in the above imidazole buffer at 4°C and desalted into the
appropriate buffer for other experiments. Proteins were characterized using UV-vis spectroscopy

and mass spectrometry.
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2. UV-vis characterization of NO,YO™ and Ru-modified azurins.
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Figure S1. UV-vis spectra of 3-nitrotyrosinate (NO,YO™, Sigma-Aldrich) (red — — —), Cu" All
Phe P. aeruginosa azurin (green *++), and HI26NO,YO™ Cu" azurin (blue —). All components
are in 50 mM sodium phosphate + 50 mM NaCl, pH 8.5.
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Figure S2. (A) UV-vis spectra of 3-nitrotyrosinate (NO,YO", Sigma-Aldrich) (red — « —), Cu"
All Phe P. aeruginosa azurin (cyan — — —), Ru(2,2"-bipyridine),(imidazole),Cl, (green ***) and
RuH126NO,YO Cu" azurin (blue —). (B) Comparison of RuH126NO,YO™ Cu" azurin
(blue — —) and the linear combination of the component spectra shown in (A) (green ). All
components are in 50 mM sodium phosphate + 50 mM NaCl, pH 8.5.
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3. Mass spec of Ru(2,2"-bipyridine)(imidzaole)(HisX)-NO,YOH-modifed azurins.
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Figure S3. Mass spec for RuH107NO,YOH109 azurin. Azurin loses its Cu”" ion in the mass
spec. The molecular weight (MW) of the un-nitrated protein is 13907 g mol . The protein with
nitration of YOH109 has MW = 13953 g mol'. Addition of Ru"(2,2"-bipyridine)(imidazole)
(481.5 g mol ") gives a final MW of 14434 g mol . The observed mass is 14427 g mol .

Protein Sequence: AECSVDIQGNDQMQFNTNAITVDKSCKQFTVNLS
HPGNLPKNVMGHNFVLSTAADMQGVVTDGMASGLDKDFLKP
DDSRVIAQTKLIGSGEKDSVTFDVSKLKEGEHFYFFCTFPGHSA
LMKGTLTLK

*NQO,-modified Y and Ru-modified H are in bold.
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Figure S4. Mass spec for RuH126NO,YOH122 azurin. Azurin loses its Cu®" ion in the mass
spec. The molecular weight (MW) of the un-nitrated protein is 13937 g mol . The protein with
nitration of YOH109 has MW = 13983 g mol'. Addition of Ru"(2,2"-bipyridine)(imidazole)
(481.5 g mol ") gives a final MW of 14464 g mol . The observed mass is 14466 g mol .

Protein Sequence: AECSVDIQGNDQMQFNTNAITVDKSCKQFTVNLS
HPGNLPKNVMGHNFVLSTAADMQGVVTDGMASGLDKDFLKP
DDSRVIAQTKLIGSGEKDSVTFDVSKLKEGEQFMFFCTFPGHS
ALMYGTLHLK

*NO,-modified Y and Ru-modified H are in bold.
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Figure S5. Mass spec for RuH124NO,YOH122 azurin. Azurin loses its Cu®" ion in the mass
spec. The molecular weight (MW) of the un-nitrated protein is 13937 g mol . The protein with
nitration of YOH109 has MW = 13983 g mol'. Addition of Ru"(2,2"-bipyridine)(imidazole)
(481.5 g mol ™) gives a final MW of 14464 g mol . The observed mass is 14466 g mol .

Protein Sequence: AECSVDIQGNDQMQFNTNAITVDKSCKQFTVNLS
HPGNLPKNVMGHNFVLSTAADMQGVVTDGMASGLDKDFLKP
DDSRVIAQTKLIGSGEKDSVTFDVSKLKEGEQFMFFCTFPGHS
ALMYGHLTLK

*NO,-modified Y and Ru-modified H are in bold.
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4. Azurin structures and ET distance determination.

The HI26NO,YO™ and H124NO,YO™ azurins could only be crystallized in the absence of
Ru-label. The distances required for analysis with semiclassical theory had to be estimated by
other means. ET distances for RuH126NO,YO and RuH124NO,YO™ were estimated using the
models shown in Figure S6 and S7, respectively. Ca overlays were generated using the “align”
function in PyMOL. Although the Re'-label in the models is different from the Ru"-label used in
the current study, we believe that these models provide reasonable estimates of the true ET
distances. The effects of different ET distance formulations on hopping maps are described

below.
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Figure S6. C-a overlay of HI126NO,YOH azurin (PDB 4HIP) with Re(CO)3(4,7-dimethyl-
phenanthroline)H126-azurin (PDB 3IBO). RMS =0.311.

D
— \

Figure S7. C-a overlay of H124NO,YOH122 azurin (PDB 4HHW) with Re(CO);(4,7-dimethyl-
phenanthroline)H124W122 azurin (PDB 2170). RMS = 0.249.
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5. Effects of reorganization energy and electronic coupling on hopping advantage maps.

The hopping advantage maps in the main text used our empirical ET parameters for
tunneling in azurin (A = 0.8 eV, p = 1.1 A™"). Presented in the following sections are a series of
maps that explore the effects associated with varying those parameters. In each map the driving
forces and electronic coupling at close contact are fixed (as noted in the captions).

The conclusions from these maps follow those in the main text. Unsurprisingly, the
greatest hopping advantage is achieved for driving force optimized ET (-AG° = A) and when the
distance for each tunneling step is minimized. Maps with smaller 3 have a shallower change in
electronic coupling (Hag) as a function of distance, resulting in fewer cofactor arrangements that
could provide a hopping advantage. Hopping in these better-coupled systems is less
advantageous than in more weakly coupled systems. It follows that when Hag changes more as a
function of distance (larger f) single-step ET becomes less likely and a greater hopping
advantage is possible. A critical conclusion here is that breaking a large donor-acceptor distance
into shorter tunneling steps produces the greatest hopping advantage, but this does not
necessarily provide any information about the absolute tunneling times when comparing systems

with different cofactor arrangements.
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5.1 Hopping advantage maps with variable reorganization energy (A)
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Figure S8. Hopping advantage maps for a two-step ET system (Cu'>Int>Ru'") in each of three
azurins. In each map the overall driving force —~AG°(Int>Ru"") is 0 eV and ~AG°(Cu'>Ru") is
0.7 eV, T is 298 K, the distance decay constant () is 1.1 A™', and the close-contact coupling
element (Hag") is 186 cm ™. Thop 18 the calculated hopping time and T is the calculated single-
step tunneling time. The contour lines are plotted at 0.1 log unit intervals. The reorganization
energies (A) are indicated at the left. The center row is the same as in Figure 1 of the main text.
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5.2 Hopping advantage maps with variable electronic coupling ()
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Figure S9. Hopping advantage maps for a two-step ET system (Cu'>Int>Ru'") in each of three

azurins. In each map the overall driving force —~AG°(Int>Ru"") is 0 eV and ~AG°(Cu'>Ru") is
0.7 eV, T is 298 K, the reorganization energies (A) is 0.7 eV, and the close-contact coupling
element (Hag") is 186 cm ™. Thop 18 the calculated hopping time and T is the calculated single-
step tunneling time. The contour lines are plotted at 0.1 log unit intervals. The distance decay
constants (f) are indicated at left. The center row is the same as in Figure 1 of the main text.
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6. Center-to-center versus edge-to-edge distances for hopping maps.
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Figure S10. Hopping maps for NO,YO -substituted azurins: (A), (B), and (C) are as in the main
text. Maps (D), (E), and (F) are made using the distances between the closest aromatic carbon in
NO,YO™ and the Ru" (1)) or Cu" (1;). The carbon in NO,YO ™ used for the distance formulation is
given in the subscript. The distances are: (A), (D) RuH107NO,YO 109 with r;.c3 = 10.4 (11.4),
ra.c1 = 14.9 (16.7), r3 = 25.4 (25.4) A; (B), (E) RuH126NO,YO 122 with r.c3 = 13.1 (14.2), r2-ce
=11.1 (13.3), r; = 23.7 (23.7) A; and (C), (F) RuH124NO,YO 122 with ri.c3 = 6.7 (7.8), r.co =
10.9 (13.3), 3 =19.4 (19.4) A. In all maps A= 0.8 eV, p = 1.1 A™", T =298 K and Hag" = 186
cm . The subscripts 1, 2, and 3 refer to the Ru™, NO,YO", and Cu', respectively. The contour
lines are plotted at 0.2 log unit intervals. The black dots (or black bar in (A) and (D)) are at the
driving forces given in the text.
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Table S1. Comparison of hopping rate constants for different distance formulations.

khop ¢ khop(calc)b khop(calc)d
Ru(H107)  (7.7+0.5) x 10° 8.7 x 10*¢ 5.0 x 10*¢
Ru(H126) (6.0 +0.5) x 10° 23 x 10° 7.8 x 10°
Ru(H124)  (3.0+0.5) x 10’ 1.3 x 10° 7.1 x 10°

* khop = Khopping b knop(cale) are from the hopping maps shown in A, B and C (center-to-center
distances). © Calculated with AG°(NO,YO 109—Ru"™) = 0.2 eV.? knop(calc) are from the hopping
maps shown in D, E and F (edge-to-edge distances).

Hopping maps constructed using center-to-center distances (from the main text) and
using edge-to-edge distances are shown in Figure S10. The ET distances for each formulation are
not dramatically different, so the shapes of the maps do not change very much. Using edge-to-
edge distances results in shorter tunneling steps, so the calculated rate constants increase by
about a factor of 5. The calculated hopping rate constants are in better agreement with
experiment for RuH107NO,YO 109 and RuH126NO,YO 122, but show poorer agreement with
experiment for RuH124NO,YO 122.

As noted in the main text, subtle changes in ET distance, reorganization energy, and
electronic coupling can have marked effects on predictions of semiclassical ET theory. As such,
semiclassical ET theory is usually accurate within an order of magnitude for single step ET. We
show here that semiclassical ET theory provides good predictive power and design criteria for
hopping systems, but that predictive power is limited by the accuracy of the many ET parameters

for each step.
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7. Effects of variable A and p on predictions from hopping maps.

We also analyzed the effects of changing A and 3 (using center-to-center ET distances)
on the predictions from hopping maps. The results are tabulated in Table S2 and the individual
hopping maps are shown in Figure S11-S16. We varied A between 0.6 and 1.0 eV and 3 between
1.0 and 1.5 A™". In both cases, the range of parameter values is reasonable for biological systems.

Analysis of the hopping maps generated from varying A and f3 support our use of or
empirical values (0.8 ¢V and 1.1 A™", respectively) for tunneling via redox partners on a single f-
strand in azurin. Varying A between 0.6 and 1.0 eV affects predicted hopping rate constants by
less than a factor of 5, except for RuH126NO,YO 122. In that case, rates for ET through the
non-optimally arranged cofactors (with a large distance for the uphill first step) is more sensitive
to changes in A. Hopping is not predicted in poorly coupled systems (p = 1.5 A™), in accord with

our observation that ET in Ru-modified proteins is largely described by p=1.1+0.1 A™".

Table S2. Calculated hopping rate constants for Ru-labled NO,YO™ azurins.”

Ru(H107)" Ru(H126) Ru(H124)
(7.7£05)x 10°  (6.0+£0.5)x 10° (3.0 +0.5) x 10°

A=0.6eV 3.1 x 10? 1.8 x 10* 1.3 x 10°
A=08eV 8.7 x 107 2.3 x 10° 1.3 x 10°
A=1.0eV 4.1 x 10 NA 2.8x10°
p=1.0A" 3.0 x 10° 7.2 % 10° 2.6 x 10°
B=11A" 8.7 x 10 2.3 x 10° 1.3 x 10°
B=15A" NA NA NA

“ All rate constants are s . Values in bold are those given in the main text. All other values are
taken from the hopping maps in Figures S11-S16. The observed rate constants for ET in each
system are given in the second row. ” All values are calculated with AG°(NO,YO 109—Ru'") =
0.2eV
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7.1 Maps for RuH107NO;YO 109 azurin
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Figure S11. Hopping maps for RuH107NO,YO 109 azurin showing the effect of varying the
reorganization energy (A) between 0.6 and 1.0 eV (at top). The maps were constructed with r; =
115, 7, =155, r3; =254 A. In all maps p = 1.1 A", T =298 K and Hg’ = 186 cm'. The
subscripts 1, 2, and 3 refer to Ru"™', NO,YO ™ and Cu' respectively. The contour lines are plotted
at 0.2 log unit intervals. The black bar represents the driving forces given in the main text.
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Figure S12. Hopping maps for RuH107NO,YO 109 azurin showing the effect of varying the
electronic coupling decay constant (B) between 1.0 and 1.5 A™' (at top). The maps were
constructed with 7, = 11.5, 7, = 15.5, r3 = 25.4 A. In all maps the reorganization energy (\) is 0.8
eV, T =298 K and Hxg’ = 186 cm ™. The subscripts 1, 2, and 3 refer to Ru™ NO,YO™ and Cu'
respectively. The contour lines are plotted at 0.2 log unit intervals. The black bar represents the
driving forces given in the main text.
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7.2 Maps for RuH126NO,;YO 122 azurin
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Figure S13. Hopping maps for RuH126NO,YO 109 azurin illustrating the effect of varying the
reorganization energy (A) between 0.6 and 1.0 eV (at top). The maps were constructed with r; =
143, 7, =11.5,r3 =237 A. In all maps f = 1.1 A™', T = 298 K and Hpg’ = 186 cm'. The
subscripts 1, 2, and 3 refer to Ru"™, NO,YO ™ and Cu' respectively. The contour lines are plotted
at 0.2 log unit intervals. The black bar represents the driving forces given in the main text.
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Figure S14. Hopping maps for RuH126NO,YO 109 azurin showing the effect of varying the
electronic coupling decay constant (B) between 1.0 and 1.5 A™' (at top). The maps were
constructed with 7, = 14.3, 7, = 11.5, r3 = 23.7 A. In all maps the reorganization energy (\) is 0.8
eV, T =298 K and Hxg’ = 186 cm ™. The subscripts 1, 2, and 3 refer to Ru™ NO,YO™ and Cu'

respectively. The contour lines are plotted at 0.2 log unit intervals. The black bar represents the
driving forces given in the main text.



Warren et al. Hopping in nitrotyrosine-modified azurin S19

7.3 Maps for RuH124NO,;YO 122 azurin
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Figure S15. Hopping maps for RuH124NO,YO 109 azurin illustrating the effect of varying the
reorganization energy (A) between 0.6 and 1.0 eV (at top). The maps were constructed with r, =
83,7 =123, ;=194 A In all maps p = 1.1 A", T = 298 K and Hap" = 186 cm'. The
subscripts 1, 2, and 3 refer to Ru"™', NO,YO ™ and Cu' respectively. The contour lines are plotted
at 0.2 log unit intervals. The black bar represents the driving forces given in the main text.
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Figure S16. Hopping maps for RuH124NO,YO 109 azurin showing the effect of varying the
electronic coupling decay constant (B) between 1.0 and 1.5 A™' (at top). The maps were
constructed with r; = 8.3, 7, = 12.3, r3 = 19.4 A. In all maps the reorganization energy (A) is 0.8
eV, T =298 K and Hxg’ = 186 cm ™. The subscripts 1, 2, and 3 refer to Ru™ NO,YO™ and Cu'

respectively. The contour lines are plotted at 0.2 log unit intervals. The black bar represents the
driving forces given in the main text.



