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1. Protein Modification Protocols 

1.1 Tyrosine Nitration. 

Azurin proteins containing a single, surface exposed, tyrosine are readily nitrated using a 

slightly modified literature procedure.S1 A septum-capped Schlenk flask was charged with 30 mL 

of approximately 250 µM solution of azurin in 25 mM sodium phosphate buffer at pH 8. The 

solution was deoxygenated with several gentle pump-argon backfill cycles. A freshly prepared 

solution (19 mL) of 1% v/v tetranitromethane (Sigma-Aldrich) in absolute ethanol was added 

dropwise to the protein solution. The solution was stirred for 3 hours, changing from the 

characteristic blue color of azurin to a deep green. The protein solution was concentrated using 

ultrafiltration and desalted into 10 mM Tris buffer at pH 9 using a PD-10 column (GE 

Healthcare). The protein was FPLC purified using a Q-HP column (GE Healthcare) and eluting 

with a NaCl gradient. Purity was assessed using UV-vis spectroscopy and mass spectrometry. 

Isolated yields of ≥ 90% are based upon comparison of total protein by UV-vis before and after 

nitration (ε630(CuII-azurin) = 5600 M–1 cm–1). 

1.2 Ruthenium Labeling. 

 Ru-labeling of azurin was performed using a slightly modified literature procedure.S2 

NO2YOH-modified azurin was exchanged into 300 mM NaHCO3 buffer to give a final 

concentration of 300 µM (10 mL, ~50 mg). Freshly dissolved Ru(2,2´-bipyridine)2CO3
S3 (1.1 

equiv. in 300 mM NaHCO3) was added and the resulting purple solution was allowed to react for 

several hours overnight at room temperature to yield a green solution. The protein solution was 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(S1) Lee, J. C.; Langen, R.; Hummel, P. A.; Gray, H. B.; Winkler, J. R. Proc. Natl. Acad. Sci. 

U.S.A. 2004, 101, 16466-16471. 
(S2) Faham, S.; Day, M. W.; Connick, W. B.; Crane, B. R.; Di, B., Angel J.; Schaefer, W. P.; 

Rees, D. C.; Gray, H. B. Acta Cryst. D 1999, 55, 379-385. 
(S3) Johnson, E. C.; Sullivan, B. P.; Salmon, D. J.; Adeyemi, S. A.; Meyer, T. J. Inorg. Chem. 

1978, 17, 2211-2215. 
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concentrated using ultrafiltration and desalted into 10 mM Tris buffer + 1 M NaCl at pH 8 using 

a PD-10 column (GE Healthcare). Modified and unmodified azurin were separated using a Hi-

Trap Chelating column (GE Healthcare). Replacement of the water molecule coordinated to 

Ru(2,2´-bipyridine)(HisX) (X = 107, 124, 126) was achieved by exchanging the protein into 500 

mM imidazole, 100 mM NaCl and 1 mM CuSO4  at pH 7.5. The protein was incubated a room 

temperature for 3-5 days and purified using a Q-HP column (GE Healthcare) and eluting with a 

NaCl gradient. Proteins were stored in the above imidazole buffer at 4°C and desalted into the 

appropriate buffer for other experiments. Proteins were characterized using UV-vis spectroscopy 

and mass spectrometry. 
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2. UV-vis characterization of NO2YO– and Ru-modified azurins. 
 

	  
Figure S1. UV-vis spectra of 3-nitrotyrosinate (NO2YO–, Sigma-Aldrich) (red – – –), CuII All 
Phe P. aeruginosa azurin (green •••), and H126NO2YO– CuII azurin (blue –––). All components 
are in 50 mM sodium phosphate + 50 mM NaCl, pH 8.5. 
 

	  

	  
Figure S2. (A) UV-vis spectra of 3-nitrotyrosinate (NO2YO–, Sigma-Aldrich) (red – • –), CuII 
All Phe P. aeruginosa azurin (cyan – – –), Ru(2,2´-bipyridine)2(imidazole)2Cl2 (green •••) and 
RuH126NO2YO– CuII azurin (blue –––). (B) Comparison of RuH126NO2YO– CuII azurin  
(blue –– –) and the linear combination of the component spectra shown in (A) (green •••). All 
components are in 50 mM sodium phosphate + 50 mM NaCl, pH 8.5. 
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3. Mass spec of Ru(2,2´-bipyridine)(imidzaole)(HisX)-NO2YOH-modifed azurins. 

 

Figure S3. Mass spec for RuH107NO2YOH109 azurin. Azurin loses its Cu2+ ion in the mass 
spec. The molecular weight (MW) of the un-nitrated protein is 13907 g mol–1. The protein with 
nitration of YOH109 has MW = 13953 g mol–1. Addition of RuII(2,2´-bipyridine)(imidazole) 
(481.5 g mol–1) gives a final MW of 14434 g mol–1. The observed mass is 14427 g mol–1. 
 
Protein Sequence: A E C S V D I Q G N D Q M Q F N T N A I T V D K S C K Q F T V N L S 
H P G N L P K N V M G H N F V L S T A A D M Q G V V T D G M A S G L D K D F L K P 
D D S R V I A Q T K L I G S G E K D S V T F D V S K L K E G E H F Y F F C T F P G H S A 
L M K G T L T L K 
 
*NO2-modified Y and Ru-modified H are in bold. 
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Figure S4. Mass spec for RuH126NO2YOH122 azurin. Azurin loses its Cu2+ ion in the mass 
spec. The molecular weight (MW) of the un-nitrated protein is 13937 g mol–1. The protein with 
nitration of YOH109 has MW = 13983 g mol–1. Addition of RuII(2,2´-bipyridine)(imidazole) 
(481.5 g mol–1) gives a final MW of 14464 g mol–1. The observed mass is 14466 g mol–1. 
 
Protein Sequence: A E C S V D I Q G N D Q M Q F N T N A I T V D K S C K Q F T V N L S 
H P G N L P K N V M G H N F V L S T A A D M Q G V V T D G M A S G L D K D F L K P 
D D S R V I A Q T K L I G S G E K D S V T F D V S K L K E G E Q F M F F C T F P G H S 
A L M Y G T L H L K 
 
*NO2-modified Y and Ru-modified H are in bold. 
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Figure S5. Mass spec for RuH124NO2YOH122 azurin. Azurin loses its Cu2+ ion in the mass 
spec. The molecular weight (MW) of the un-nitrated protein is 13937 g mol–1. The protein with 
nitration of YOH109 has MW = 13983 g mol–1. Addition of RuII(2,2´-bipyridine)(imidazole) 
(481.5 g mol–1) gives a final MW of 14464 g mol–1. The observed mass is 14466 g mol–1. 
 
Protein Sequence: A E C S V D I Q G N D Q M Q F N T N A I T V D K S C K Q F T V N L S 
H P G N L P K N V M G H N F V L S T A A D M Q G V V T D G M A S G L D K D F L K P 
D D S R V I A Q T K L I G S G E K D S V T F D V S K L K E G E Q F M F F C T F P G H S 
A L M Y G H L T L K 
 
*NO2-modified Y and Ru-modified H are in bold. 
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4. Azurin structures and ET distance determination. 
 
 The H126NO2YO– and H124NO2YO– azurins could only be crystallized in the absence of 

Ru-label. The distances required for analysis with semiclassical theory had to be estimated by 

other means. ET distances for RuH126NO2YO– and RuH124NO2YO– were estimated using the 

models shown in Figure S6 and S7, respectively. Cα overlays were generated using the “align” 

function in PyMOL. Although the ReI-label in the models is different from the RuII-label used in 

the current study, we believe that these models provide reasonable estimates of the true ET 

distances. The effects of different ET distance formulations on hopping maps are described 

below.  
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Figure S6. C-α overlay of H126NO2YOH azurin (PDB 4HIP) with Re(CO)3(4,7-dimethyl-
phenanthroline)H126-azurin (PDB 3IBO). RMS = 0.311.  
 

 
Figure S7. C-α overlay of H124NO2YOH122 azurin (PDB 4HHW) with Re(CO)3(4,7-dimethyl-
phenanthroline)H124W122 azurin (PDB 2I7O). RMS = 0.249. 
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5. Effects of reorganization energy and electronic coupling on hopping advantage maps. 

 The hopping advantage maps in the main text used our empirical ET parameters for 

tunneling in azurin (λ = 0.8 eV, β = 1.1 Å–1). Presented in the following sections are a series of 

maps that explore the effects associated with varying those parameters. In each map the driving 

forces and electronic coupling at close contact are fixed (as noted in the captions).  

 The conclusions from these maps follow those in the main text. Unsurprisingly, the 

greatest hopping advantage is achieved for driving force optimized ET (–ΔG° = λ) and when the 

distance for each tunneling step is minimized. Maps with smaller β have a shallower change in 

electronic coupling (HAB) as a function of distance, resulting in fewer cofactor arrangements that 

could provide a hopping advantage. Hopping in these better-coupled systems is less 

advantageous than in more weakly coupled systems. It follows that when HAB changes more as a 

function of distance (larger β) single-step ET becomes less likely and a greater hopping 

advantage is possible. A critical conclusion here is that breaking a large donor-acceptor distance 

into shorter tunneling steps produces the greatest hopping advantage, but this does not 

necessarily provide any information about the absolute tunneling times when comparing systems 

with different cofactor arrangements. 
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5.1 Hopping advantage maps with variable reorganization energy (λ) 
 

 
Figure S8. Hopping advantage maps for a two-step ET system (CuI

àIntàRuIII) in each of three 
azurins. In each map the overall driving force –ΔG°(IntàRuIII) is 0 eV and –ΔG°(CuI

àRuIII) is 
0.7 eV, T is 298 K, the distance decay constant (β) is 1.1 Å–1, and the close-contact coupling 
element (HAB

0) is 186 cm–1. τhop is the calculated hopping time and τss is the calculated single-
step tunneling time. The contour lines are plotted at 0.1 log unit intervals. The reorganization 
energies (λ) are indicated at the left. The center row is the same as in Figure 1 of the main text. 
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5.2 Hopping advantage maps with variable electronic coupling (β) 
 

 
Figure S9. Hopping advantage maps for a two-step ET system (CuI

àIntàRuIII) in each of three 
azurins. In each map the overall driving force –ΔG°(IntàRuIII) is 0 eV and –ΔG°(CuI

àRuIII) is 
0.7 eV, T is 298 K, the reorganization energies (λ) is 0.7 eV, and the close-contact coupling 
element (HAB

0) is 186 cm–1. τhop is the calculated hopping time and τss is the calculated single-
step tunneling time. The contour lines are plotted at 0.1 log unit intervals. The distance decay 
constants (β) are indicated at left. The center row is the same as in Figure 1 of the main text. 
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6. Center-to-center versus edge-to-edge distances for hopping maps. 
 

 

 

 
Figure S10. Hopping maps for NO2YO–-substituted azurins: (A), (B), and (C) are as in the main 
text. Maps (D), (E), and (F) are made using the distances between the closest aromatic carbon in 
NO2YO– and the RuII (r1) or CuII (r2). The carbon in NO2YO– used for the distance formulation is 
given in the subscript. The distances are: (A), (D) RuH107NO2YO–109 with r1-C3 = 10.4 (11.4), 
r2-C1 = 14.9 (16.7), r3 = 25.4 (25.4) Å; (B), (E) RuH126NO2YO–122 with r1-C3 = 13.1 (14.2), r2-C6 
= 11.1 (13.3), r3 = 23.7 (23.7) Å; and (C), (F) RuH124NO2YO–122 with r1-C3 = 6.7 (7.8), r2-C2 = 
10.9 (13.3), r3 = 19.4 (19.4) Å. In all maps λ = 0.8 eV, β = 1.1 Å–1, T = 298 K and HAB

0 = 186 
cm–1. The subscripts 1, 2, and 3 refer to the RuIII, NO2YO–, and CuI, respectively. The contour 
lines are plotted at 0.2 log unit intervals. The black dots (or black bar in (A) and (D)) are at the 
driving forces given in the text.   
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Table S1. Comparison of hopping rate constants for different distance formulations. 
 

 khop
 a khop(calc)

b khop(calc)
d 

Ru(H107) (7.7 ± 0.5) × 103 8.7 × 102 c 5.0 × 103 c 
Ru(H126) (6.0 ± 0.5) × 103 2.3 × 103 d 7.8 × 103 f 
Ru(H124) (3.0 ± 0.5) × 105 1.3 × 106 d 7.1 × 106 f 

a khop = khopping b khop(calc) are from the hopping maps shown in A, B and C (center-to-center 
distances). c Calculated with ΔG°(NO2YO–109→RuIII) = 0.2 eV. d khop(calc) are from the hopping 
maps shown in D, E and F (edge-to-edge distances). 
	  
	  
 Hopping maps constructed using center-to-center distances (from the main text) and 

using edge-to-edge distances are shown in Figure S10. The ET distances for each formulation are 

not dramatically different, so the shapes of the maps do not change very much. Using edge-to-

edge distances results in shorter tunneling steps, so the calculated rate constants increase by 

about a factor of 5. The calculated hopping rate constants are in better agreement with 

experiment for RuH107NO2YO–109 and RuH126NO2YO–122, but show poorer agreement with 

experiment for RuH124NO2YO–122.  

As noted in the main text, subtle changes in ET distance, reorganization energy, and 

electronic coupling can have marked effects on predictions of semiclassical ET theory. As such, 

semiclassical ET theory is usually accurate within an order of magnitude for single step ET. We 

show here that semiclassical ET theory provides good predictive power and design criteria for 

hopping systems, but that predictive power is limited by the accuracy of the many ET parameters 

for each step.  
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7. Effects of variable λ  and β  on predictions from hopping maps.  
 
 We also analyzed the effects of changing λ and β (using center-to-center ET distances) 

on the predictions from hopping maps. The results are tabulated in Table S2 and the individual 

hopping maps are shown in Figure S11-S16. We varied λ between 0.6 and 1.0 eV and β between 

1.0 and 1.5 Å–1. In both cases, the range of parameter values is reasonable for biological systems. 

 Analysis of the hopping maps generated from varying λ and β support our use of or 

empirical values (0.8 eV and 1.1 Å–1, respectively) for tunneling via redox partners on a single β-

strand in azurin. Varying λ  between 0.6 and 1.0 eV affects predicted hopping rate constants by 

less than a factor of 5, except for RuH126NO2YO–122. In that case, rates for ET through the 

non-optimally arranged cofactors (with a large distance for the uphill first step) is more sensitive 

to changes in λ. Hopping is not predicted in poorly coupled systems (β = 1.5 Å–1), in accord with 

our observation that ET in Ru-modified proteins is largely described by β = 1.1 ± 0.1 Å–1. 

 
Table S2. Calculated hopping rate constants for Ru-labled NO2YO– azurins.a 

 Ru(H107)b Ru(H126) Ru(H124) 
 (7.7 ± 0.5) ×  103 (6.0 ± 0.5) ×  103 (3.0 ± 0.5) ×  105 

λ = 0.6 eV 3.1 × 102 1.8 × 104 1.3 × 106 
λ  = 0.8 eV 8.7 ×  102 2.3 ×  103 1.3 ×  106 
λ = 1.0 eV 4.1 × 102 NA 2.8 × 105 
β = 1.0 Å–1 3.0 × 103 7.2 × 103 2.6 × 106 
β  = 1.1 Å–1 8.7 ×  102 2.3 ×  103 1.3 ×  106 
β = 1.5 Å–1 NA NA NA 

a All rate constants are s–1. Values in bold are those given in the main text. All other values are 
taken from the hopping maps in Figures S11-S16. The observed rate constants for ET in each 
system are given in the second row. b All values are calculated with ΔG°(NO2YO–109→RuIII) = 
0.2 eV 
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7.1 Maps for RuH107NO2YO–109 azurin 
 

 
Figure S11. Hopping maps for RuH107NO2YO–109 azurin showing the effect of varying the 
reorganization energy (λ) between 0.6 and 1.0 eV (at top). The maps were constructed with r1 = 
11.5, r2 = 15.5, r3 = 25.4 Å. In all maps β = 1.1 Å–1, T = 298 K and HAB

0 = 186 cm–1. The 
subscripts 1, 2, and 3 refer to RuIII, NO2YO– and CuI respectively. The contour lines are plotted 
at 0.2 log unit intervals. The black bar represents the driving forces given in the main text.  
 
 

 
Figure S12. Hopping maps for RuH107NO2YO–109 azurin showing the effect of varying the 
electronic coupling decay constant (β) between 1.0 and 1.5 Å–1 (at top). The maps were 
constructed with r1 = 11.5, r2 = 15.5, r3 = 25.4 Å. In all maps the reorganization energy (λ) is 0.8 
eV, T = 298 K and HAB

0 = 186 cm–1. The subscripts 1, 2, and 3 refer to RuIII, NO2YO– and CuI 
respectively. The contour lines are plotted at 0.2 log unit intervals. The black bar represents the 
driving forces given in the main text. 
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7.2 Maps for RuH126NO2YO–122 azurin 
 

 
Figure S13. Hopping maps for RuH126NO2YO–109 azurin illustrating the effect of varying the 
reorganization energy (λ) between 0.6 and 1.0 eV (at top). The maps were constructed with r1 = 
14.3, r2 = 11.5, r3 = 23.7 Å. In all maps β = 1.1 Å–1, T = 298 K and HAB

0 = 186 cm–1. The 
subscripts 1, 2, and 3 refer to RuIII, NO2YO– and CuI respectively. The contour lines are plotted 
at 0.2 log unit intervals. The black bar represents the driving forces given in the main text.  
 
 

 
Figure S14. Hopping maps for RuH126NO2YO–109 azurin showing the effect of varying the 
electronic coupling decay constant (β) between 1.0 and 1.5 Å–1 (at top). The maps were 
constructed with r1 = 14.3, r2 = 11.5, r3 = 23.7 Å. In all maps the reorganization energy (λ) is 0.8 
eV, T = 298 K and HAB

0 = 186 cm–1. The subscripts 1, 2, and 3 refer to RuIII, NO2YO– and CuI 
respectively. The contour lines are plotted at 0.2 log unit intervals. The black bar represents the 
driving forces given in the main text. 
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7.3 Maps for RuH124NO2YO–122 azurin 
 

 
Figure S15. Hopping maps for RuH124NO2YO–109 azurin illustrating the effect of varying the 
reorganization energy (λ) between 0.6 and 1.0 eV (at top). The maps were constructed with r1 = 
8.3, r2 = 12.3, r3 = 19.4 Å. In all maps β = 1.1 Å–1, T = 298 K and HAB

0 = 186 cm–1. The 
subscripts 1, 2, and 3 refer to RuIII, NO2YO– and CuI respectively. The contour lines are plotted 
at 0.2 log unit intervals. The black bar represents the driving forces given in the main text.  
 
 

 
Figure S16. Hopping maps for RuH124NO2YO–109 azurin showing the effect of varying the 
electronic coupling decay constant (β) between 1.0 and 1.5 Å–1 (at top). The maps were 
constructed with r1 = 8.3, r2 = 12.3, r3 = 19.4 Å. In all maps the reorganization energy (λ) is 0.8 
eV, T = 298 K and HAB

0 = 186 cm–1. The subscripts 1, 2, and 3 refer to RuIII, NO2YO– and CuI 
respectively. The contour lines are plotted at 0.2 log unit intervals. The black bar represents the 
driving forces given in the main text. 
 


