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Abstract. Diabetes mellitus is a complex multi-system disorder that may be classified as autoimmune mediated type 1 diabetes,
or as insulin resistance associated type 2 diabetes. In type 1 diabetes, there is selective loss of the beta cells within the endocrine
islets, as a consequence of T-cell and cytokine mediated destruction of these cells, perhaps in conjunction with destruction of
the peri-islet Schwann cells. In type 2 diabetes, the etiology of the resistance ranges from post-receptor defects in the insulin
signaling pathway to excessive production of adipocyte derived cytokines that antagonize insulin action to mitochondrial defects
that interfere with glucose disposal. Proteome based technologies are providing new insights into these defects.
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1. Introduction

Diabetes mellitus afflicts 6 to 8% of the population in
the US. Type 1 diabetes mellitus (T1DM) patients have
lost their beta cells as a result of aberrant activation
of cellular immune mechanisms, and they no longer
produce insulin. They are dependent, therefore, on
insulin injections for survival. Most individuals with
diabetes have type 2 diabetes mellitus (T2DM) and are
resistant to insulin action. T2DM is also associated
with beta cell dysfunction, and with production of fat-
derived cytokines that antagonize insulin actions. This
review will focus on several recent developments in
T1DM and T2DM with an emphasis on the application
of proteomic technologies.

2. The beta cell and insulin secretion

The pancreas is a complex tissue consisting of acinar
cells that produce digestive enzymes, duct cells that
produce bicarbonate rich fluid, and approximately one
million endocrine islets which are distributed through-
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out the exocrine pancreas, with the greatest density oc-
curring in the tail of the pancreas. The islets are rich
in beta cells which secrete insulin, a hormone that is
packaged into heterogeneous granules with electron-
dense cores [1]. In addition, there are adjoining cells
in the islets which secrete glucagon (alpha cells) and
somatostatin (delta cells), and these hormones coun-
teract insulin’s hypoglycemic effects and insulin se-
cretion, respectively. There is also a small population
of endocrine cells that secrete pancreatic polypeptide,
whose function is not yet fully elucidated.

Small amounts of insulin are secreted from the beta
cells in the fasting state, acting to inhibit hepatic glu-
coneogenesis [2]. Following a meal, glucose enters the
beta cell through a process of facilitated diffusion that
is mediated by the GLUT-2 glucose transporter. The
same glucose transporter is also found in the liver, renal
tubules, and the small intestine, but not in other types of
islet cells [3]. GLUT-2 exhibits a high Km for glucose
uptake, allowing the beta cell to transport glucose in
proportion to the extracellular glucose concentration,
thereby leading to a large increase in insulin secretion.

Glucose stimulated release of insulin is biphasic,
with a rapid first phase and a more gradual sec-
ond phase that lasts for two hours and that is partly
dependent on the release of newly synthesized in-
sulin [4]. Glucose acts by generating ATP which in-
hibits a K+ channel, thereby depolarizing the beta cell
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plasma membrane, activating voltage-dependent cal-
cium channels, and inducing a rise in intracellular free
calcium [5–7]. Calcium-calmodulin protein kinases,
cyclic AMP (cAMP)-dependent protein kinases, phos-
phatidic acid, lysophospholipids, and arachidonic acid
and its metabolites also have important roles in modu-
lating insulin secretion [8–10]. Inter- and intracellular
signaling by the cells of the pancreatic islet in response
to glucose, as well as other metabolites, also contribute
to the integrated response of the beta cell and to the
controlled release of insulin in response to a meal.

3. Type 1 diabetes mellitus

T1DM is characterized by progressive destruction of
the beta cells due to the aberrant activation of cellular
immune mechanisms, as manifested by the presence of
T-cell infiltrates around and within the islets. There are
approximately one million T1DM patients in the US,
all of whom are dependent on insulin therapy for their
survival. The absence of insulin also makes them prone
to develop ketoacidosis, a potentially deadly metabolic
complication.

The mechanisms that lead to beta cell destruction in
T1DM are still not completely understood. It is widely
accepted, however, that the selective assault on the beta
cell is mediated by cytotoxic T-cells and by certain cy-
tokines [11]. For example, interleukin-1β (IL-1β) can
suppress beta cell function and survival [12]. Proteome
based studies of islets and islet derived cell lines that
were exposed to IL-1β has revealed a complex pat-
tern of protein alterations, including increased and de-
creased protein expression andde novo protein induc-
tion, underscoring the wide range of responses that can
be elicited in the these cells and that can modulate their
responsiveness and susceptibility to cytokine mediated
cell death [13–15].

In addition toin vitro studies, investigators have ad-
dressed the issue of beta cell destruction in numer-
ous in vivo studies. For example, in a recent study
with the non-obese diabetic (NOD) mouse, which is
an excellent model of T1DM, the Schwann cells that
surround the islets were noted to be targeted at an
early, pre-diabetic stage by the aberrantly activated T
cells [16]. These peri-islet Schwann cells (pSC) ex-
press glial fibrillary acidic protein (GFAP), and the
authors noted that the diabetes-prone NOD mice de-
velop pSC-autoreactive T and B cell responses that are
associated with progressive pSC death that precedes
beta cell death. They used surface-enhanced laser des-

orption/ionization (SELDI) with time-of-flight (TOF)
mass spectrometry to detect auto-antibodies against
GFAP in the sera of NOD mice and newly diagnosed
diabetic children with T1DM [16]. Thus, an important
component of the immune mediated destruction of the
beta cell may be mediated by aberrant targeting of pSC.

In another study,peptide epitopes from naturally pro-
cessed proinsulin were delineated by TOF mass spec-
trometry, and used to establish very sensitive enzyme-
linked immunosorbent assays to assess the nature of
auto-reactive T-cells in T1DM [17]. These T-cells ex-
hibited a pro-inflammatory Th1 response in T1DM pa-
tients, but a T-regulatory cell response leading to the
preferential production of the anti-inflammatory cy-
tokine interleukin-10 (IL-10) in non-diabetic individu-
als [17]. These observations suggest that the immune
system actively protects against potential beta cell de-
struction, and that this protective mechanism is lost in
T1DM.

4. Type 2 diabetes mellitus

T2DM is characterized by insulin resistance, a fail-
ure of the beta cell to produce enough insulin to over-
come the resistance, inappropriate hepatic glucose re-
lease, and production of cytokines by adipose tissue
that interfere with insulin action. There are approxi-
mately 16 million T2DM patients in the US, some of
whom may require insulin therapy to achieve adequate
blood glucose control. The presence of normal, in-
creased, or slightly decreased circulating insulin levels
assures that they only rarely develop ketoacidosis.

Insulin resistance in T2DM may be the consequence
of abnormal production of anti-insulin receptor an-
tibodies [18], but is generally due to post-receptor
defects [19]. Some examples of post-receptor de-
fects include silent polymorphisms and naturally oc-
curring amino acid substitutions in the insulin recep-
tor substrate-1 (IRS-1) signaling protein which may
contribute to insulin resistance [20,21]. In support
of this hypothesis, IRS-1 knockout mice exhibit in-
sulin resistance and glucose intolerance [22], and IRS-
2 knockout mice exhibit decreased insulin-stimulated
glucose transport in conjunction with decreased beta
cell mass and overt diabetes [23]. Similarly, there
is homology between the ataxia-telangiectasia (AT)
gene product and phosphatidylinositol 3-kinase (PI 3-
kinase). The relatively high frequency of T2DM in pa-
tients with AT raises the possibility that perturbations
in PI 3-kinase function may represent one of the post-
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receptor defects that contributes to insulin resistance
in some T2DM [24]. Mutations in the peroxisome
proliferator-activated receptor (PPARγ) may lead to al-
tered adipocyte differentiation and energy storage and
may also contribute to insulin resistance in T2DM [25].
Furthermore, excessive secretion of certain hormones
such as cortisol, as seen in Cushing’s disease, or growth
hormone, as seen in acromegaly, may antagonize in-
sulin action sufficiently to induce a T2DM-like state.

T2DM is often associated with obesity, which is a
major cause for insulin resistance. Increased visceral
obesity is especially deleterious in this regard because
visceral fat is prone to release free fatty acids (FFA)
which directly interfere with efficient insulin signaling,
partly as a result of enhanced protein kinase C isoforms
activity and increased hepatic glucose release [26,27].
Furthermore, visceral fat expresses theβ3-adrenergic
receptor, which participates in the regulation of ther-
mogenesis and lipolysis [28], and mutations in this re-
ceptor are associated with insulin resistance, an earlier
onset of T2DM and attenuated insulin secretion [29,
30]. The adipocyte is also the source of several cy-
tokines such as tumor necrosis factor alpha (TNF-α),
which induces insulin resistance by down-regulating
GLUT4 and increasing free fatty acid release [31],
and interleukin-6 (IL-6), which induces insulin resis-
tance in fat cells and hepatocytes [32,33]. By con-
trast, adiponectin and IL-10 exert anti-diabetogenic ef-
fects [34,35], and reduced levels of IL-10 increase the
risk for the development of the dysmetabolic syndrome
in women [36]. In addition to obesity and diabetes, pa-
tients with the dysmetabolic syndrome exhibit hyper-
tension, hyperlipidemia, heart disease and peripheral
vascular disease, and a tendency towards elevated uric
acid levels.

The role of adipose tissue in the pathogenesis of in-
sulin resistance has been investigated in several model
cell lines, including the mouse 3T3-L1 fibroblastic cell
line which differentiates rapidly into an adipocyte phe-
notype in response to insulin and is useful, therefore, for
studying insulin action and adipogenic differentiation.
Thus, two-dimensional gel electrophoresis of 3T3-L1
cell lysates revealed that insulin does not stimulate
calmodulin phosphorylation under conditions in which
it stimulates the phosphorylation of other proteins [37],
and indicated that altered expression of several cellu-
lar proteins contributes to the differentiation process in
these cells [38]. More recently, a proteome based ap-
proach using velocity gradient centrifugation to achieve
the initial separation of proteins revealed that there was
a marked increase in mitochondrial proteins in these

cells during the differentiation process [39]. The au-
thors also examined the effects of rosiglitazone, an ag-
onist that activates the gamma isoform of the peroxi-
some proliferator-activated receptor (PPARγ), which is
a nuclear receptor that modulates adipocyte differentia-
tion. In addition to altering mitochondrial morphology,
rosiglitazone increased the levels of proteins involved
in fatty acid oxidation,such as acyl-CoA synthetase and
dehydrogenase [40]. Rosiglitazone also increases car-
boxypeptidase B expression in mouse islets [41], and
modulates components of the peroxisomal fatty acid
metabolism pathway in adipose tissue [42], raising the
possibility that it may also ameliorate glucose home-
ostasis by improving insulin processing and fatty acid
metabolism.

Another site of insulin resistance is the skeletal mus-
cle. A proteome based analysis of human skeletal
muscle identified 8 potential markers of T2DM [43].
The levels of two proteins that have a crucial role in
ATP synthesis, creatine kinase B and ATP synthaseβ-
subunit, were decreased in the muscle tissue of T2DM
patients. Genetic muscular disorders may also be as-
sociated with a high incidence of T2DM. For example,
patients with mitochondrial myopathies may present
with muscle weakness, symmetric paralysis of the ex-
traocular muscles, drooping eyelids (ptosis), T2DM
and cardiomyopathy [44]. Other patients with T2DM
exhibit a maternal pattern of inheritance in conjunc-
tion with inherited deafness and mitochondrialgene de-
fects [45]. The importance of mitochondrial defects in
T2DM was highlighted in a recent study which revealed
that insulin-resistant children of T2DM parents exhib-
ited increased muscle cell lipid content in conjunction
with decreased mitochondrial phosphorylation, as de-
termined by magnetic resonance spectroscopy [46]. In-
terestingly, rates of lipolysis and plasma levels of IL-6,
TNF-a, and adiponectin were not different in the two
groups, further underscoring the potential importance
of the mitochondrial defect in the pathogenesis of in-
sulin resistance.

Disorders of the pancreas that are neither T1DM nor
T2DM may also be associated with glucose intolerance
and diabetes. These include chronic pancreatitis, cystic
fibrosis, pancreatic cancer, sequelae of partial pancrea-
tectomy, hemochromatosis, and transfusion associated
iron overload. It has been suggested that increased iron
stores in general may lead to an increased propensity
to T2DM [47], and that both chronic pancreatitis and
pancreatic cancer may be associated with a significant
component of insulin resistance that contributes to the
hyperglycemia that may occur in these conditions [48,
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49]. Future proteome based studies in these conditions
may therefore shed new light on novel mechanisms for
insulin resistance.

5. Conclusion

T1DM is caused by immune mediated beta cell de-
struction. T2DM is caused by insulin resistance in con-
junction with variable degrees of a defective beta cell
response to hyperglycemia [50]. Proteome based stud-
ies are likely to yield additional insight into the mech-
anisms involved in pathophysiology of both disorders.
Already, proteome based studies are contributing infor-
mation about beta cell responses to insulin treatment
and to inflammatory cytokines, as well as potential
biomarkers of T2DM in skeletal muscle.
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