Supporting Information

Andrews et al. 10.1073/pnas.1319247110

Fig. S1. Comparison of morphology of mitochondria in control cells and in cells in which expression of subunit NDUFA11 has been suppressed transiently. (*A*) Human 143B cells transfected with (*A*) control siRNA and (*B*) siRNA targeted against subunit NDUFA11. The cells were stained with MitoTracker 72 h after transfection, fixed, and visualized by confocal microscopy. (Scale bars, 10 μ m.)

Fig. S2. Reestimation of molecular masses of subcomplexes of human complex I by blue native (BN)-PAGE. The gels were calibrated with the following proteins and protein complexes with their calculated molecular masses given in kilodaltons in parentheses: 1, bovine complex I (971); 2, apoferritin 1 (720); 3, bovine ATP synthase (597); 4, bovine complex III (482); 5, apoferritin 2 (480); 6, bovine complex IV (205); 7, B-phycoerythrin (242); 8, lactate dehydrogenase (146); and 9, BSA (66). ▲, standard proteins and complexes; ●, subcomplexes of complex I; their molecular masses as measured here are as follows, with previous estimates for a–d (1) in parentheses: a, 815 (830) kDa; b, 550 (650) kDa; c, 370 (460) kDa; d, 315 (400) kDa; and e, 200 kDa.

1. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817(6):851-862.

Fig. S3. Colocalization of C3orf1 and TMEM126B with mitochondria, and members of the C3orf1 protein family. The C-terminal FLAG and StrepII-tagged C3orf1 (*A*, *i–iii*) and C-terminal FLAG-tagged TMEM126B (*B*, *i–iii*) were visualized in HeLa cells. Plasmid pcDNA5/FRT/TO containing the C-terminal-tagged sequence of interest was transfected into HeLa cells, which were treated with MitoTracker 24 h later, fixed, permeabilized with Triton X-100, and immunostained. (*A*, *i* and *B*, *i*) Alexa Fluor 488 anti-mouse secondary antibody conjugated to mouse anti-FLAG antibody; (*A*, *ii* and *B*, *ii*) MitoTracker Orange staining; (*A*, *iii*) *A*, *i* and *A*, *ii* merged; (*B*, *iii*) *B*, *i* and *B*, *ii* merged. (Scale bar in each merged image, 10 µm.) (C) Alignment of sequence sections of C3orf1 and other protein family members NDUFA11, TIM12, and TIM23 (PFAM: PF02466). The positions of transmembrane α -helices predicted with HMMTOP (1) are indicated by red bars beneath the sequences. A Clustal X color scheme is used for aligned residues: hydrophobic (A, C, I, L, M, F, W, and V), blue; basic (R and K), red; acidic (D and E), magenta; amide (N and Q) and nucleophilic (S and T), green; H and Y, cyan; G, orange; and P, yellow.

1. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849-850.

Fig. S4. Presence of NDUFAF3, ACAD9, and NDUFAF2 in subassemblies of complex I. Human 143B cells were treated for 96 h with siRNAs against TMEM126B (100 nM) and NDUFA11 (30 nM). Mitoplast proteins from those cells were separated by BN-PAGE and Western blotted with antibodies against: (A) NDUFAF3, ACAD9, and complex II and (B) NDUFAF2 and complex III.

Fig. S5. Suppression of expression of ATP5SL and DNAJC11 in human 143B cells. Western blot analyses of mitoplasts from human 143B cells prepared 96 h after addition of siRNAs (50 nM) targeted against ATP5SL and DNAJC11, both singly and together. The proteins were fractionated by SDS/PAGE (*A*) and BN-PAGE (*B*). Detection with antibodies against, in *A*, DNAJC11 and ATP5SL, with the membrane stained with Coomassie blue as a loading control, and in *B*, against the NDUFS2 subunit, a component of subcomplex $I\alpha$ and subunit NDUFB8, a component of subcomplex $I\beta$. The levels of complexes II and III are shown on the *Right*.

Fig. S6. Fragment ion mass spectra of three peptides from TMEM126B that are diagnostic of isoforms 1 and 5. The N-terminal region of isoform 5 is truncated by 30 residues relative to isoform 1. (A) N-terminal peptide (m/z 671.32²⁺) of TMEM126B isoform 1, lacking the initiator methionine residue; (B) peptide (residues 14–27; m/z 692.85²⁺) from isoform 1-specific region of TMEM126B; (C) N-terminal peptide (m/z 846.39²⁺) lacking initiator methionine from TMEM126B isoform 5. The N-terminal alanine is acetylated.

Other Supporting Information Files

Dataset S1 (XLSX) Dataset S2 (XLSX)

PNAS PNAS