Supporting Information

Gan and Frohlich 10.1073/pnas.1311316110

Fig. S1. Monthly rates (*Upper*) and cumulative volumes (*Lower*) of liquid extracted at the Cogdell field for 1949–1982 as reported by Davis and Pennington (1). Rates and volumes plotted are oil plus water extracted minus water injected. Red circles are Cogdell earthquakes as reported by the National Earthquake Information Center (NEIC), the International Seismological Center (ISC), and Davis (2) from inspection of seismograms recorded at Lubbock, TX.

1. Davis SD, Pennington WD (1989) Induced seismic deformation in the Cogdell oil field of west Texas. Bull Seismol Soc Am 79:1477–1495. 2. Davis SD (1985) Investigations of natural and induced seismicity in the Texas Panhandle. MS thesis (Univ Texas Austin, Austin, TX), p 230.

Fig. 52. Map showing gas injection wells active since 2004 (yellow squares) and polygons surrounding areas where extraction and injection were summed to construct Figs. 4 and 5 (Cogdell), Figs. S5 and S6 (Kelly–Snyder), and Figs. S7 and S8 (Salt Creek).

Fig. S3. Magnitude-frequency distribution of earthquakes as reported for 1977–2005 by the NEIC, and for 2009–2011 from the combined NEIC-ISC-Array Network Facility (ANF) catalogs. The data available to and procedures used by the NEIC and ANF are considerably different during the two periods of interest, and thus a precise comparison of magnitudes may not be meaningful. Nevertheless, the two groups have significantly different b values, possibly suggesting the events are generated by a different physical process. The plotted data for 1977–2005 do not include earthquakes reported by Harding (1) unless they also appeared in the NEIC catalog.

1. Harding ST (1981) Induced Cogdell Canyon Reef oil field. Summaries of Technical Reports, Vol. IX (US Department of the Interior, Menlo Park, CA), pp 452-455.

Fig. 54. Maps showing Cogdell-area epicenters (circles) determined using different methods. Earthquakes are 90 well-recorded events occurring between March 2009 and December 2010. (A) Unrelocated epicenters in the ANF catalog; (B) Single-event locations located from primary (P) and secondary (S) phases at the six stations in Table 51; (C) Locations determined using same arrivals and the station corrections in Table 51; (D) Relocations determined using the double-difference method (1) (Table S3).

1. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bull Seismol Soc Am 90: 1353–1368.

Fig. S5. For the Kelly–Snyder field, monthly volumes of natural gas produced (green line) and gas injected (red line) from 1977 to 2012 (red circles). Volumes on left axes are as reported by Texas Railroad Commission (RRC) for gas at surface at standard temperature and pressure (STP), and for CO₂ at 200 bars and 75 °C (supercritical CO₂, SCCO₂, at depth). Volumes at depth are highly approximate because the pressure–temperature effect differs for natural gas and CO₂, and because injected gas is often mixed with water and the physical properties of the mixture changes after injection. Gas volume data are from RRC and IHS digital database for the region labeled "Kelly–Snyder" in Fig. S2. Gas volume data before 1990 (gray area) are incomplete (see *Materials and Methods*).

Fig. S6. For the Kelly–Snyder field, monthly (*Upper*) and cumulative (*Lower*) volumes of oil produced (green line), water produced (blue line), water injected (red line), and net extracted volume (black line, oil + water produced minus water injected). Volume data are from RRC and IHS digital database for the region labeled "Kelly–Snyder" in Fig. S2; data before 1990 (gray area) are incomplete (see *Materials and Methods*).

Fig. 57. For the Salt Creek field, monthly volumes of natural gas produced (green line) and gas injected (red line) from 1977 to 2012 (red circles). Volumes on left axes are as reported by RRC for gas at surface at STP, and for CO_2 at 200 bars and 75 °C (SCCO₂ at depth). Volumes at depth are highly approximate because the pressure–temperature effect differs for natural gas and CO_2 , and because injected gas is often mixed with water and the physical properties of the mixture changes after injection. Gas volume data are from RRC and IHS digital database for the region labeled "Salt Creek" in Fig. S2. Gas volume data before 1990 (gray area) are incomplete (see *Materials and Methods*).

Fig. S8. For the Salt Creek field, monthly (*Upper*) and cumulative (*Lower*) volumes of oil produced (green line), water produced (blue line), water injected (red line), and net volume extracted (black line, oil + water produced minus water injected). Volume data are from RRC and IHS digital database for the region labeled "Salt Creek" in Fig. S2; data before 1990 (gray area) are incomplete (see *Materials and Methods*).

Fig. S9. Example P and S phases plotted to ensure we picked the same features so as to improve relative locations. Red line indicates the phase arrival picked. Labels indicate year, month, and day events occurred.

Station	Start time	End time	Latitude, °	Longitude, °	Correction, s
129A	01/31/09	12/7/10	32.6309	-101.8662	+0.125
130A	03/12/09	02/9/11	32.5961	-100.9652	-0.010
131A	03/14/09	02/9/11	32.6737	-100.3888	+0.210
Z29A	01/29/09	12/4/10	33.2595	-101.7062	-0.278
Z30A	03/10/09	02/6/11	33.2861	-101.1282	-0.107
Z31A	3/17/09	2/8/11	33.3183	-100.1435	+0.063
731A Z29A Z30A Z31A	03/14/09 01/29/09 03/10/09 3/17/09	02/9/11 12/4/10 02/6/11 2/8/11	32.6737 33.2595 33.2861 33.3183	-100.3888 -101.7062 -101.1282 -100.1435	+0.210 -0.278 -0.107 +0.063

Table S1. Seismograph stations used in this investigation

Station corrections are used to determine locations in Fig. S4C, and were determined using a joint hypocenter determination method.

Table S2. Focal mechanisms, locations, and moment magnitude (M_{w}) for Cogdell-area earthquakes as reported by the St. Louis group (1)

Latitude,°	Longitude,°	Date	Strike 1,°	Dip 1,°	Rake 1,°	Strike 2,°	Dip 2,°	Rake 2,°	M_W
33	-100.7	1978/6/16	260	60	-60	31	41	-131	4.51
32.99	-100.79	2010/8/8	203	61	-132	85	50	-40	3.37
32.95	-100.81	2011/3/13	70	60	-50	191	48	-138	3.81
32.82	-100.9	2011/9/11	207	85	-160	115	70	-5	4.41
32.84	-100.88	2011/9/12	206	76	-154	110	65	-15	3.51

Table gives strike, dip, and rake of nodal planes 1 and 2.

1. Herrmann RB, Benz H, Ammon CJ (2011) Monitoring the earthquake source process in North America. Bull Seismol Soc Am 101:2609-2625.

Year	mo	d	h	mi	S	Latitude,°	Longitude,°	Mag	rms
2009	5	26	14	31	6.930	32.93369	-100.90347	2.9	0.072
2009	6	29	4	33	0.280	32.87752	-100.89502	1.8	0.068
2009	7	31	9	21	51.280	32.80895	-100.92980	2.3	0.081
2009	7	31	18	39	28.940	32.93098	-100.90223	3.6	0.086
2009	8	12	14	48	39.390	32.91095	-100.87277	2.0	0.090
2009	8	25	19	45	13.840	32.87746	-100.89560	3.0	0.065
2009	8	26	2	1	51.130	32.87560	-100.89650	2.4	0.085
2009	8	28	23	14	19.960	32.87261	-100.89848	2.4	0.062
2009	9	1	10	36	55.950	32.93701	-100.89541	2.4	0.075
2009	10	11	4	10	54.350	32.92989	-100.90093	2.0	0.089
2009	10	16	23	50	15.240	32.90931	-100.87753	3.5	0.073
2009	11	15	18	41	30.640	32.87471	-100.89629	2.3	0.065
2009	11	26	15	20	38.470	32.91125	-100.87443	2.0	0.086
2009	12	28	11	56	7.330	32.93594	-100.89720	2.0	0.108
2010	1	5	13	36	11.380	32.93739	-100.89561	2.1	0.071
2010	1	8	6	17	42.860	32.94754	-100.88601	2.1	0.049
2010	1	8	21	27	8.080	32.94738	-100.88595	2.6	0.086
2010	1	27	4	59	32.390	32.87156	-100.90045	3.1	0.105
2010	1	27	6	25	43.950	32.86911	-100.90491	2.9	0.082
2010	2	6	5	4	8.870	32.93069	-100.90382	2.3	0.163
2010	2	10	2	51	41.660	32.88150	-100.90250	2.4	0.074
2010	2	13	11	21	23.130	32.86150	-100.90096	2.5	0.080
2010	3	22	13	42	51.490	32.89176	-100.89473	2.1	0.070
2010	3	24	5	2	9.520	32.89643	-100.92702	1.9	0.046
2010	3	24	20	50	4.880	32.89239	-100.89441	2.7	0.067
2010	3	28	21	/	23.360	32.95127	-100.88199	2.7	0.076
2010	3	30	6	18	1.820	32.86898	-100.91271	2.2	0.080
2010	4	3	13	8	48.470	32.92860	-100.90295	2.8	0.102
2010	4	9	21	15	59.900	32.93103	-100.90353	2.2	0.094
2010	4	11	19	50	36.680	32.92944	-100.90271	3.2	0.088
2010	4	12	10	20	5.540	32.93102	-100.09970	2.0	0.076
2010	5	1	10	20	50.190	32.80531	-100.93324	1.8	0.152
2010	5	1 0	10	40	39.220	32.80044	-100.92968	2.9	0.097
2010	5	0 15	10	/2	1 9 2 0	22.33//1	100.09042	1.9	0.110
2010	6	5	2	45	17 860	32.92004	100.90781	2.5	0.147
2010	6	5	7	51	51 710	32.00033	-100.85364	27	0.075
2010	6	10	9	28	4 660	32 92624	-100.00504	1.8	0.007
2010	6	23	0	20	7 550	32.32024	-100.89223	2.5	0.050
2010	6	23	18	34	11 960	32 90010	-100.92205	2.5	0.096
2010	6	25	17	45	58,180	32,94785	-100.89964	3.0	0.068
2010	6	25	20	17	23.840	32,94730	-100.89836	2.2	0.092
2010	6	25	23	14	54.080	32.94660	-100.89754	2.4	0.089
2010	7	11	8	34	56.430	32.88440	-100.90612	2.5	0.069
2010	7	17	2	44	35.390	32.90715	-100.88365	1.8	0.061
2010	7	20	17	12	28.680	32.90445	-100.87633	3.0	0.075
2010	7	22	4	44	0.060	32.94817	-100.89915	2.9	0.094
2010	7	22	23	28	5.800	32.93533	-100.89507	2.9	0.083
2010	7	25	0	41	23.380	32.94630	-100.88605	2.5	0.080
2010	7	28	11	49	57.680	32.89631	-100.92844	1.9	0.081
2010	7	29	12	19	19.910	32.88315	-100.91032	2.8	0.080
2010	8	6	6	39	45.000	32.93178	-100.89928	3.2	0.085
2010	8	8	1	12	38.130	32.87533	-100.89779	3.4	0.078
2010	8	8	2	10	7.490	32.87357	-100.90027	2.0	0.171
2010	8	8	7	31	9.000	32.86706	-100.90028	2.8	0.077
2010	8	8	11	47	18.150	32.87078	-100.90039	2.7	0.086
2010	8	10	19	56	23.560	32.93225	-100.89944	2.1	0.127
2010	8	11	3	6	59.110	32.87365	-100.90312	2.4	0.069
2010	8	11	8	7	30.160	32.84985	-100.91677	2.7	0.081
2010	8	11	8	51	14.340	32.85085	-100.91650	2.2	0.086
2010	8	13	15	3	15.370	32.94770	-100.88596	2.4	0.100
2010	8	14	8	27	31.030	32.86646	-100.90155	1.7	0.074

Table S3. Epicenters determined by relocation using the double-difference method (1) with focal depths fixed arbitrarily at 5 km

PNAS PNAS

Table S	53. Con	t.							
Year	mo	d	h	mi	S	Latitude,°	Longitude,°	Mag	rms
2010	8	14	10	49	3.690	32.94912	-100.89742	2.1	0.092
2010	8	14	19	49	29.520	32.95174	-100.89634	2.3	0.070
2010	8	15	12	55	43.840	32.95568	-100.87695	1.7	0.073
2010	8	22	0	27	22.340	32.88015	-100.89494	2.0	0.072
2010	8	25	2	5	14.220	32.94224	-100.89045	2.8	0.080
2010	8	28	13	35	31.980	32.89254	-100.89574	2.1	0.068
2010	8	29	5	34	20.250	32.97548	-100.83881	1.9	0.068
2010	8	29	12	48	36.920	32.94930	-100.89818	2.6	0.066
2010	8	31	6	11	41.170	32.94822	-100.90033	2.1	0.132
2010	8	31	15	56	5.310	32.92727	-100.91029	2.8	0.091
2010	9	1	10	58	24.040	32.89584	-100.89478	1.9	0.066
2010	9	1	11	29	40.330	32.89452	-100.89502	1.9	0.096
2010	9	1	16	53	58.730	32.94772	-100.88591	2.6	0.089
2010	9	3	3	34	47.430	32.97729	-100.83728	2.5	0.067
2010	9	30	3	44	24.260	32.95070	-100.89815	2.4	0.066
2010	10	2	20	37	49.460	32.95337	-100.89901	2.6	0.090
2010	10	9	7	42	26.650	32.95378	-100.90072	3.1	0.097
2010	10	9	9	13	0.820	32.95631	-100.89751	2.0	0.100
2010	10	9	15	51	56.600	32.95666	-100.90025	2.1	0.113
2010	10	10	8	20	0.680	32.90051	-100.87720	2.7	0.076
2010	10	10	10	27	48.970	32.97366	-100.84705	2.1	0.103
2010	10	12	7	59	32.690	32.89605	-100.92686	1.9	0.072
2010	10	17	2	9	16.110	32.92612	-100.90992	2.1	0.138
2010	10	26	6	56	28.940	32.92793	-100.89966	3.1	0.108
2010	11	1	9	10	57.400	32.97683	-100.83755	2.8	0.068
2010	11	10	11	6	26.620	32.95483	-100.89198	2.1	0.145
2010	11	12	22	17	54.280	32.97174	-100.85622	2.5	0.103
2010	11	14	0	40	24.760	32.89586	-100.89577	1.8	0.105
2010	12	7	22	35	44.480	32.92649	-100.90888	2.5	0.042

Mag, magnitude; rms, rms residual.

PNAS PNAS

1. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bull Seismol Soc Am 90: 1353–1368.