Supporting Information Supporting Information Corrected December 30, 2013

Zhang et al. 10.1073/pnas.1311028110

SI Methods

Fitting of Equation of States. The bulk modulus (B_0 ; GPa) and the equivalent volume of the carbon allotropes are obtained by least-square fitting of the equation of states (EOS). Three universal forms of EOS, namely, Vinet EOS (1), Murnaghan EOS (2), and the third-order Birch-Murnaghan EOS (3), are independently used for the fitting, all of which yield consistent results.

Vinet EOS.

$$P(V) = 3B_0 x^{-2} (1-x) \exp[\eta(1-x)], \quad x = \left(\frac{V}{V_0}\right)^{1/3}, \quad \eta = \frac{3}{2} (B'_0 - 1).$$

Murnaghan EOS.

$$P(V) = \frac{B_0}{B'_0} \left[\left(\frac{V_0}{V} \right)^{B'_0} - 1 \right].$$

Third-Order Birch-Murnaghan EOS.

$$P(V) = \frac{3B_0}{2} \left(x^{-7} - x^{-5} \right) \left[1 + \frac{3}{4} \left(B'_0 - 4 \right) \left(x^{-2} - 1 \right) \right], \quad x = \left(\frac{V}{V_0} \right)^{1/3}.$$

- 1. Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal features of the equation of state of solids. J Phys Condens Matter 1(11):1941.
- Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247.

Here *P* and *V* denote the pressure and the corresponding volume of cell, respectively. V_0 is the equivalent volume at zero pressure and B'_0 is the bulk modulus pressure derivative. Integrating these two EOSs with *V* yields the corresponding *E-V* relationship, where *E* is the total energy at volume *V*.

Vinet EOS.

$$E(V) = E_0 + \frac{9B_0V_0}{\eta^2} \left\{ 1 - [1 - \eta(1 - x)]\exp[\eta(1 - x)] \right\}.$$

Murnaghan EOS.

$$E(V) = E(0) + \frac{B_0 V}{B_0'} \left[\frac{(V_0/V)^{B_0'}}{B_0' - 1} + 1 \right] - \frac{B_0 V_0}{B_0' - 1}$$

Third-Order Birch-Murnaghan EOS.

$$E(V) = E_0 + \frac{9B_0V_0}{16} \left[(x^{-2} - 1)^3 B'_0 + (x^{-2} - 1)^2 (6 - 4x^{-2}) \right],$$
$$x = \left(\frac{V}{V_0}\right)^{1/3}.$$

3. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71(11):809-824.

Fig. S1. Direction-resolved phonon frequency density of states for C2 atoms in T6-carbon. The x direction here is parallel to the C=C double bond in the structure.

Fig. 52. Calculated first-order Raman spectra of graphite and T6-carbon. Our result in graphite is in good agreement with previous work (1).

1. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126-1130.

() ||

Fig. 53. (A) Optimized geometry of T28-carbon viewed along the [100] and [110] directions, (B) phonon dispersions, and (C) electronic band structure of T28-carbon.

Table S1.	Optimized structura	data of t	the carbon	allotropes	investigated in	n this work
-----------	---------------------	-----------	------------	------------	-----------------	-------------

Lattice parameters (Å)

Structure	а	b	с	Atomic Wyckoff positions		
Т6	2.60		6.00	C(2 <i>f</i>): (1/2, 1/2, 1/4)		
P4 ₂ /mmc (131)				C(4 <i>i</i>): (0, 1/2, 0.1118)		
T14	2.56		14.62	C(4h): (1/2, 1/2, 0.9517)		
P4 ₂ /mmc (131)				C(4 <i>i</i>): (1/2, 0, 0.9027)		
				C(4 <i>i</i>): (1/2, 0, 0.8084)		
				C(2 <i>f</i>): (1/2, 1/2, 1/4)		
T12 (1)	3.43		6.09	C(8i): (0.3319, 0.8319, 0.3597)		
P4 ₂ /ncm (138)				C(4b): (0, 0, 0)		
T28	3.55		14.66	C(8i): (0.2478, 0.2522, 0.6539)		
P4 ₂ /ncm (138)				C(8i): (0.8385, 0.6615, 0.5559)		
				C(8 <i>f</i>): (0, 0, 0.2991)		
				C(4 <i>b</i>): (0, 0, 0.5)		
Cubic-C ₁₆ (2) <i>Im</i> 3m (229)	4.88			C(16f): (0.3374, 0.3374, 0.3374)		
T-carbon (3) <i>Fd</i> 3m (227)	7.52			C(32e): (0.0706, 0.0706, 0.0706)		
L-carbon (4)	5.32		8.68	C(12k): (0.4274, 0.8548, 0.5267)		
Р6 ₃ /ттс (194)				C(4f): (1/3, 2/3, 0.6681)		
Y-carbon (5)	9.64			C(8a): (0, 0, 0)		
Fd 3 m (227)				C(32e): (0.0888, 0.0888, 0.0888)		
TY-carbon (5)	13.46			C(32e): (0.0397, 0.0397, 0.0397)		
Fd3m (227)				C(32e): (0.0987, 0.0987, 0.0987)		

1. Zhao Z, et al. (2012) Tetragonal allotrope of group 14 elements. J Am Chem Soc 134(30):12362-12365.

SANG SANG

2. Srinivasu K, Ghosh SK (2012) Electronic structure, optical properties, and hydrogen adsorption characteristics of supercubane-based three-dimensional porous carbon. J Phys Chem C 116(47):25015–25021.

3. Sheng X-L, Yan Q-B, Ye F, Zheng Q-R, Su G (2011) T-carbon: A novel carbon allotrope. Phys Rev Lett 106(15):155703.

4. Yang L, He HY, Pan BC (2013) Theoretical prediction of new carbon allotropes. J Chem Phys 138(2):024502-024506.

5. Jo JY, Kim BG (2012) Carbon allotropes with triple bond predicted by first-principle calculation: Triple bond modified diamond and T-carbon. Phys Rev B 86(7):075151.

Structure	ρ (g/cm³)	<i>B</i> ₀ (GPa)	B_0'	V ₀ (ų/atom)	
Diamond	3.550	433.1 (1) (454.6)	3.71	5.621	
Lonsdaleite	3.487	433.1 (1) (454.5)	3.63	5.719	
graphite	2.017	245.0	3.51	9.890	
Т6	2.952	337.4	3.79	6.766	
T12	3.342	403.2 (1) (424.8)	3.75	5.968	
T14	2.923	349.6	3.69	6.800	
T28	3.019	356.2	3.46	6.606	
Cubic-C ₁₆	2.750	309.1	3.74	7.253	
T-carbon	1.503	159.8 (2) (169)	3.61	13.274	
L-carbon	1.500	158.1 (3) (159)	3.80	13.293	
Y-carbon	0.891	83.5 (4) (82.9)	3.74	22.373	
TY-carbon	0.523	54.3 (4) (54.2)	3.71	38.103	

Table S2. Calculated equilibrium volume (V_0), bulk modulus (B_0), and corresponding pressure derivatives (B'_0)

The numbers in parentheses are also listed from the given references for comparison.

1. Zhao Z, et al. (2012) Tetragonal allotrope of group 14 elements. J Am Chem Soc 134(30):12362–12365.

2. Sheng X-L, Yan Q-B, Ye F, Zheng Q-R, Su G (2011) T-carbon: A novel carbon allotrope. Phys Rev Lett 106(15):155703.

3. Yang L, He HY, Pan BC (2013) Theoretical prediction of new carbon allotropes. J Chem Phys 138(2):024502–024506.

4. Jo JY, Kim BG (2012) Carbon allotropes with triple bond predicted by first-principle calculation: Triple bond modified diamond and T-carbon. Phys Rev B 86(7):075151.