Supplementary material for:

Apo-states of calmodulin and CaBP1 control $Ca_V\mathbf{1}$ voltage-gated calcium channel function through direct competition for the IQ domain

Felix Findeisen^{1,3}, Christine Rumpf^{1,3}, and Daniel L. Minor, Jr. ^{1,2,3,4*}

University of California, San Francisco, California 94158-2330

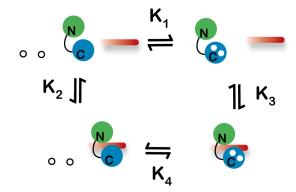
Lawrence Berkeley National Laboratory

Berkeley, CA 94720 USA

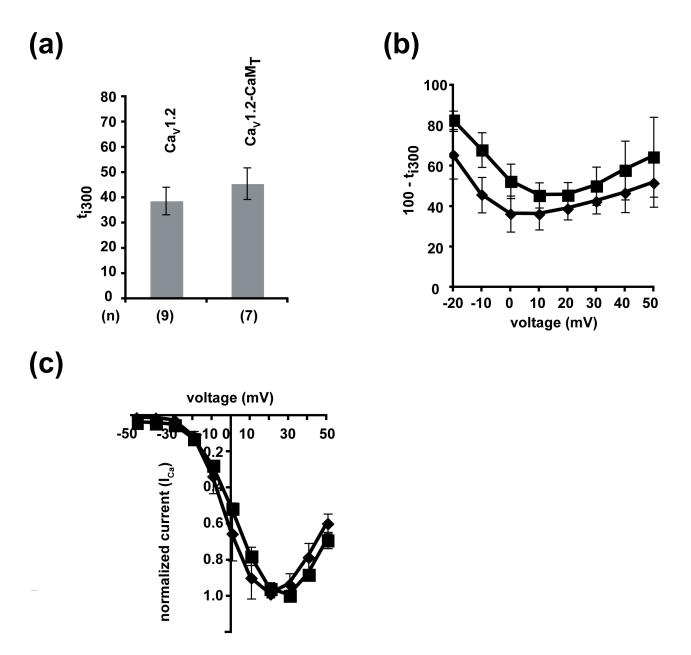
Inventory of Supplementary Material:

Supplementary Figures S1-S2

¹Cardiovascular Research Institute


²Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology

³California Institute for Quantitative Biomedical Research


⁴Physical Biosciences Science Division

Supplementary Fig. S1

Findeisen et al.

Supplementary Fig. S1 Thermodynamic analysis of CaM, Ca^{2+} , and IQ domain binding Macroscopic thermodynamic cycle for CaBP1, Ca^{2+} and $Ca_V1.2$ IQ domain. K_1 and K_4 describe Ca^{2+} binding to CaBP1 and the CaBP1/IQ complex, respectively. K_2 and K_3 describe IQ domain binding to calcium-free CaBP1 and Ca^{2+} /CaBP1, respectively.

Supplementary Fig. S2 Functional properties of $Ca_V1.2$ - CaM_T are similar to the parent channel **a**, Averaged t_i300 from normalized I_{Ca} traces at a test potential of +20 mV from *Xenopus* oocytes expressing $Ca_V1.2$ or $Ca_V1.2$ - CaM_T . In all experiments mRNA for $Ca_V\beta_{2a}$ and $Ca_V\alpha_2\delta_{-1}$ were injected at equimolar concentrations to $Ca_V1.2$. (n) indicates the number of experiments. **b**, Averaged remaining normalized current after 300 ms ($100 - t_{i300}$) at different test voltages from oocytes expressing $Ca_V1.2$ (\spadesuit) or $Ca_V1.2$ - CaM_T (\blacksquare). **c**, Averaged normalized I_{Ca} as a function of voltage. Symbols are the same as in '**b**'.