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1 Transmission model

Here, we build a transmission model that accounts for the fact that sick contacts may be
infected by other contacts in the wider community (community infections) or by other sick
household members (tertiary infections) rather than by the index case. Inference is then
made conditional on what is observed in the household on day 0.

Consider a household of size n. The age of household member i (i=1,...,n) is denoted a;.

Cough in household member i is denoted by an indicator variable SiC =1; SiC =0 otherwise.
Similarly, fever, runny nose, sore throat and diarrhea are indicated by indicator variables SiF

,S", s> and s, respectively. The vector of symptoms is denoted s, = {S,C 85 ,sf,s’, SiD} .

We denote d; the day of symptom onset for household member i. By notation di=x if no
symptom is observed in the household member during the study period and day 0
corresponds to symptom onset in the index case of the household. The data is censored at
day T=7 days.

Parameters of the model are then estimated in a Markov chain Monte Carlo (MCMC)
Bayesian framework 12,

1.1 Person-to-person hazard of infection in the household

Consider household member i with onset on day d; (not necessarily the index case of the
household). The hazard that household member i infects household member j with onset on
day d (d>d,) is modeled as follows:

PRI (d)=0(n) s (305 ) 210 (3;) T (d = ) @
where

- Function g(n) characterizes the dependency between the person-to-person hazard
of transmission and the household size n. In the baseline scenario presented in the
text, we consider a non-parametric model where 1 parameter is estimated per

household size: ¢ (n) = ,Bn for n=2,...,6. In the Sensitivity analysis, four alternative

model variants are considered. See section 3.2 for details. Figure 1A of the paper
plots g(n)/g(2) for the non-parametric model.

Sy (a1. , Si) , the relative infectivity of household member i, may depend on the age

and the symptoms of the case. For example, in the model where age is the only
predictor for infectivity, the term simplifies as:

rh,, 1f0<a <18
t (8,5)=4 1 if19<a <50
(9 if 51<a,



If more than one predictor is considered, a multiplicative model is assumed. In order
to improve stability of estimates, we selected reference groups with the largest
number of individuals, that is: ‘19-50 yr old’ for age, and for the symptoms ‘cough’,
‘fever’, ‘runny nose’, ‘sore throat’ and ‘no diarrhea’. Results are presented in section
3.7. A sequence of likelihood ratio tests is performed to select predictors of
infectivity.

7 (aj ), the relative susceptibility of household member j, may depend on the

age of the individual. The way relative susceptibility was modeled was similar to that
of relative infectivity (see above). A sequence of likelihood ratio tests is performed
to determine if age is a predictor of susceptibility.

Function f(.) is the probabilistic density of the serial interval, defined as the
distribution of the interval between symptom onset in a case and symptom onset in
the cases that they generate in household contacts in the limit of infinitesimal
secondary attack rate (i.e. when depletion of susceptible does not have an impact).
Here, we use a discretized Weibull distribution, with density

0 ifu<L

f(u)= L) LY 2
(u) exp _(H] —exp —(ﬁ] otherwise @
q q

We assume that transmission is possible only if the delay between symptoms onset of
a case and of the household members they infect is 21 day (L=1 day). In practice, it
means that if two household members A and B both have onset on day d, we make
the assumption that it is not possible for B to have been infected by A.

In the sensitivity analysis, we also investigate if the serial interval depends on the age
of the infector (see section 3.4). We report the mean and standard deviation of the
discretized distribution.

The reason for using such a seemingly abstract definition of the serial interval (rather
than simply characterise the empirical distribution) is generalisability. Using our
estimated serial interval distribution and the transmission parameters we have
estimated for households, we can reconstruct the empirical household serial interval
distribution. But in addition, past experience has shown that we can expect the
‘infinitesimal hazard’ serial interval distribution to be more applicable to transmission
outside the household than the simple empirical distribution obtained from
household data.

As illustrated in ', we could have used more explicit models of how infectivity varies
over time following infection. However, such approach would have required to make
an assumption about the incubation period of novel A(H1N1) influenza virus and
results would have been conditional on this assumption (for which very limited data
was available at the time of the analysis). We felt that estimating the onset-to-onset
serial interval was a more transparent way to describe the timing of events in the
household. From the onset-to-onset serial interval distribution presented in Figure 2



and an assumption on the distribution of the incubation period, it is possible to
reconstruct the infectivity profile according to time since onset. Figure 2 indicates that
for an individual infected by a household member, it is expected that there is 91%
probability that onset occurs less than 4 days after onset in their infector. Given that
transmission occurs prior to onset in the individual, this means that more than 91% of
household transmissions are expected to occur less than 4 days after onset in the
infector.

1.2 Community risk of infection
We assume that the hazard that household member j with onset on day d is infected in the
community is constant during the duration of the follow-up:

In the sensitivity analysis, we investigate whether the community risk of infection is age
dependent and whether estimates of other parameters are robust to an exponential
increase of the community risk as the disease spreads in the country (see section 3.3).

Although the transmission model provides estimates of the daily rate of infection from the
community, those rates are estimated on a subset of households that were exposed to novel
Influenza A(H1N1) virus. So, those rates cannot be used to be representative of the overall
level of exposure of communities in the US to novel Influenza A(H1IN1) during the early
epidemic.

1.3 Hazard of symptom onset in a household member
The hazard that household member j has symptom onset on day d is the sum of the within-
household transmission hazards as well as the community transmission hazard:

A4(d)= >, RL(d)+P(d)

i={1,..,n;i#j}

2 Inference
Parameter vector 6 of the transmission model is estimated in a likelihood-based Bayesian
inferential framework.

2.1 Likelihood function

Inference is made conditional on what is observed in the household on day 0. Given the
sequence of symptom onset observed up to day d (d>0), the probability that household
member j has symptom onset on day d is:

O<u<d

P(d; =d |19):(1—exp{—/1j (d)}).exp{— >4 (u)}

The contribution to the likelihood of household member j who does not become a case

during the study period is:



P(d, =d |¢9):exp{— > zj(u)}

O<u<T
Index cases and co-primary cases do not contribute to the likelihood.

2.2 Priors

For parameters characterizing the relative infectivity of cases (e.g. “cough” relative to “no
cough”) or the relative susceptibility of household members (e.g. “0-18yr” relative to “19-
50yr”), a log-normal prior distribution with log-mean=0 and log-variance=3 was selected.
This prior satisfies the invariance condition that the ratio (adult susceptibility/child
susceptibility) has the same prior as the ratio (child susceptibility/adult susceptibility). In
particular, it gives equal probabilities to the relative child susceptibility being larger or
smaller than 1. For log-variance=3, [2.5%,97.5%] percentile of the prior distribution is
[0.03,29.81]. In the sensitivity analysis, we explored the impact of a change in the prior on
estimates (considering the log-normal distribution with log-variance 1, 2, 4 and 5) (section
3.6).

We used the prior information that less than 20% of transmission occur after day 14 (day 0
being defined as symptom onset in the case). This is supported by a large number of viral
shedding and transmission studies>. This prior was used to ensure good convergence of the
MCMC chain. Further explanations as well as a sensitivity analysis are presented in section
3.6.

All other parameters had priors that were flat between 0 and M, where M was an artificially
large number.

2.3 Algorithms

The joint posterior distribution of the parameters is explored via MCMC sampling®™.
Parameters were updated with a Metropolis-Hastings algorithm?. The algorithm runs for
3,200,000 iterations with a burn-in of 30,000 iterations. One out of 40 iterations was
recorded. Converge was visually assessed. The Deviance Information Criterion (DIC) for
model comparison was computed”.

A simulated annealing algorithm was also implemented to maximize the likelihood and
compute the likelihood-ratio test statistic.

3 Model comparison and sensitivity analysis

To ensure that key findings were robust to modeling assumptions, we explored and
compared a large number of model variants in a sensitivity analysis. The different
assumptions that were tested are detailed below. In summary, 26 model variants (and
combinations of those variants) were investigated / tested:

- 4 models for age-specific susceptibility

- 5 for the dependency household size - transmission rate;

- 3for the risk of infection from outside (constant; exponential growth; different for

children and adults);
- 2 for the serial interval (1 distribution; different for children and adults);



- 2 approaches to deal with missing onset dates;
- 3 priors on the serial interval;
- 3 priors on relative infectivity and relative susceptibility parameters.
- 2 case definitions;
- 2 datasets.
As detailed below, key findings were found to be robust to those modeling assumptions.

Comparison of models was done with a likelihood ratio test for embedded models; and
relying on the DIC criteria otherwise. We also tested adequacy with a simulation-based x>
test comparing observed and expected distributions of the number of cases per household
size (which p-value is referred to as p-value Exp-Obs in the tables).

3.1 Models for susceptibility

We compared 4 models for susceptibility according to the age of the susceptibility: no age-
specific susceptibility (A), child relative susceptibility (B), older adult relative susceptibility
(C), child and older adult rel. sus (D; baseline). Results are summarized in table SM1. Models
B and C had a substantially better fit than model A according to DIC; and they were
significantly better than model A according to the likelihood ratio test (p<0.001 for model B
and p=0.005 for model C). Including child and older adult relative susceptibility in the same
model (D) improved the DIC fit further. The likelihood ratio test indicates that both
parameters are significantly different than 1, with p=0.005 for child relative susceptibility
and p=0.031 for older adult relative susceptibility.



Table SM1: Comparison of models for age-specific susceptibility.

A- No age
specific sus.

B- Child rel. sus.

C- Older adult
rel. sus.

D- Child and
older adult rel.
sus. (baseline)

g(2) 0.25[0.1,0.48] 0.21[0.09,0.42] 0.26[0.11,0.48] 0.22[0.1,0.43]
g(3) 0.15[0.08,0.26] 0.12[0.05,0.21] 0.17[0.08,0.28] 0.13[0.06,0.24]
g(4) 0.06[0.03,0.11] 0.04[0.02,0.08] 0.06[0.03,0.11] 0.05[0.02,0.09]
g(5) 0.05[0.01,0.1]  0.03[0.01,0.07] 0.05[0.02,0.11] 0.04[0.01,0.08]
g(6) 0.02[0,0.08] 0.01[0,0.05] 0.02[0,0.07] 0.01[0,0.06]
mean SI 2.7[2.1,4.2] 2.6[2.2,3.5] 2.7[2.2,4.5] 2.6[2.1,3.4]
sd S| 1.3[0.9,3.6] 1.3[0.9,2.4] 1.3[0.9,3.9] 1.2[0.9,2.3]
com. risk (10 44.4[5,94.9] 42.8[7.3,91.5] 44.6[13.3,90.6] 41[7.2,86]
child rel. sus. 1 2.22[1.19,4.31] 1 1.96[1.05,3.78]
older adult rel. sus. 1 1 0.13[0.01,0.74] 0.17[0.02,0.92]
max LL" -304.33 -298.86 -300.42 -296.52
DIC 623.96 615.61 617.45 611.91
p-value Exp-Obss 0.9803 0.9792 0.9845 0.985

" Log-likelihood (LL).
*: from a simulation-based %2 test comparing observed and expected distributions of the number of
cases per household size.

3.2 Dependency between transmission rate and household size
Five model variants were explored for the function g(n) that characterizes the dependency
between the person-to-person transmission hazard and household size:

- The non-parametric model (baseline scenario), with one parameter per household
size: 0 (n) =3, forn=2,...,6.

- The constant model: g(n)=4.

- Three parametric forms, with &>0:
0 Power model A: g(n):ﬂ.(S/nf
0 Power model B: g(n)z,B.{Z/(n—l)}(S

0 Exponential model: ¢ (n) = ,b’.exp{—é(n —3)}

Results are presented in Table SM2. Adequacy of the constant model was rejected on the
basis of the DIC criteria (DIC difference relative to other models >13) as well as the simulated
x* test comparing observed and expected distributions in total number of cases per
household size (p<0.009). Furthermore, the assumption that the transmission hazard was
independent of household size was formally rejected by the likelihood ratio test (p<0.001).
Adequacy of the other 4 models as measured by the comparison Expected-Observed was
good. A priori, for the parametric models, we assumed that parameter & was larger than or
equal to 0, excluding the scenario where the person-to-person transmission hazard
increases with household size. Taking a wider prior for & (e.g. uniform in [-10,10]) would not



change the posterior distribution of the parameter since there was very strong evidence in

the data that & was larger than 0 (based on the comparison of the constant model 6=0 with

other models).

Here, we observe a relatively sharp reduction in secondary attack rates between households

of size 2 to 4 after what secondary attack rates are approximately constant (Figure 1A). This

contrasts with observations made in a French household study on seasonal influenza®,

where the secondary attack rate was found to be approximately constant with household

size. Those differences are intriguing and highlight that the sociological, environmental and

biological mechanisms available to explain this dependency are still limited. For example, a

standard model that provides a good fit to the French seasonal data is that people simply

“share” their time between household members®. It is possible that the emergence of novel

Influenza A(H1N1) pandemic triggered important but unobserved behavioral changes that

affected more households of large size than others (for example because those household

have higher proportions/numbers of children). Further research is needed to investigate

those issues.

Table SM2: Comparison of the models for the dependency of household transmission hazards

with household size.

coeff &
B

8(2)
8(3)
g(4)
g(5)
g(6)

mean S|
sd S|

com. risk (10™)

child rel. sus.

older adult rel. sus.

max LL"
DIC

p-value Exp-Obs$
" Log-likelihood (LL).

Non-parametric

model
(Baseline)

0.22[0.1,0.43]
0.13[0.06,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.01[0,0.06]
2.6[2.2,3.5]
1.3[0.9,2.4]
41[7.2,86]
1.96[1.05,3.78]
(p=0.005*)
0.17[0.02,0.92]
(p=0.031%)
-296.52
611.91
0.985

Constant model
0.05[0.02,0.09]
0.05[0.02,0.09]
0.05[0.02,0.09]
0.05[0.02,0.09]
0.05[0.02,0.09]
0.05[0.02,0.09]
2.5[2.0,3.3]
1.2[0.5,2.1]

Power model A Power model B

2.51[1.46,3.77]
0.08[0.04,0.14]
0.23[0.11,0.41]
0.08[0.04,0.14]
0.04[0.02,0.07]
0.02[0.01,0.05]
0.01[0,0.04]
2.6[2.1,3.3]
1.2[0.8,2.0]

1.63[0.94,2.44]
0.07[0.03,0.13]
0.23[0.1,0.42]
0.07[0.03,0.13]
0.04[0.01,0.07]
0.02[0.01,0.05]
0.02[0,0.04]
2.6[2.1,3.3]
1.2[0.8,2.0]

Exponential
model
0.81[0.46,1.27]
0.09[0.04,0.15]
0.2[0.09,0.37]
0.09[0.04,0.15]
0.04[0.01,0.08]
0.02[0,0.04]
0.01[0,0.03]
2.6[2.1,3.2]
1.2[0.8,2.0]

56.7[14.6,126.6] 51.8[14.5,102.6] 52.9[12.4,103.9] 56.3[18.2,105.2]

1.85[0.88,4.55]
(p=0.007*)
0.17[0.01,1.04]
(p=0.016*)
-307.86
625.83
0.0086

2.6[1.3,5.77]
(p=0.005*)
0.17[0.01,1.12]
(p=0.027*)
-297.63
608.81
0.8197

2.62[1.31,6.27]
(p=0.006%)

0.19[0.02,1.17]

(p=0.028%)
-298.09
610.01
0.7556

2.77[1.37,6.26]
(p=0.005*)
0.18[0.01,1.13]
(p=0.032*)
-297.24
608.09
0.8319

*: from a simulation-based %2 test comparing observed and expected distributions of the number of
cases per household size.
*: derivation of those p-values is detailed in section 3.1 of the SM.

3.3 Community risk
We investigated whether age patterns in the data could be solely explained by the fact that

children and adults were exposed to different community risks. We therefore considered the

model where children and adults have different community risks but same susceptibility.
The fit of this model was substantially lower than that of the baseline model (Table SM3: DIC
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difference=11.31). The age of the household member was still a significant predictor of
transmission when included in the model with different community risks for adults and
children (p=0.01). No significant difference was detected between adult and children
community risks (p=0.89).

Table SM3: Comparison of the baseline model with models where the community risk is
different for children and adults.

Com risk A-C without Com risk A-C with

Baseline relative age relative age
susceptibility susceptibility
g(2) 0.22[0.1,0.43] 0.23[0.1,0.45] 0.23[0.09,0.43]
g(3) 0.13[0.06,0.24] 0.13[0.05,0.24] 0.13[0.05,0.23]
g(4) 0.05[0.02,0.09] 0.06[0.02,0.1] 0.05[0.02,0.09]
g(5) 0.04[0.01,0.08] 0.04[0.01,0.09] 0.04[0.01,0.08]
g(6) 0.01[0,0.06] 0.02[0,0.07] 0.02[0,0.06]
mean S| 2.6[2.2,3.5] 2.6[2,4] 2.6[2.1,3.7]
sd SI 1.3[0.9,2.4] 1.3[0.7,3.3] 1.2[0.8,2.7]
com. risk (10”) - adult 41[7.2,86] 48.4(6.8,100.9] 44[11.8,90.8]
com. risk (10”) - child 41[7.2,86] 244.09[42.02,564.46] 162.65[6.08,490.48]
child rel. sus. 1.96[1.05,3.78] - 1.77[0.84,3.58]
older adult rel. sus. 0.17[0.02,0.92] - 0.16[0.01,0.88]
max LL" -296.52 -303.28 -296.51
DIC 611.91 623.22 613.98
p-value Exp-Obs® 0.985 0.9647 0.9772

" Log-likelihood (LL).
*. from a simulation-based %2 test comparing observed and expected distributions of the number of
cases per household size.

We also evaluated the robustness of estimates to the assumption that the community risk
grows exponentially during follow-up. To that end, we modelled the community risk on day
d as:

a(d)=a,exp{r(d-d,)}

where d, corresponds to the first day of symptom onset in the dataset (April 12 2009) and r
is the exponential growth rate assumed to be larger than 0.

Under the assumption that r>0, the estimated exponential growth rate is 0.04 ([0.002,
0.136]) (Table SM4). There was no significant improvement compared to the model with no
exponential growth (p=0.33). Accounting for exponential growth in the community risk does
not affect other estimates.



Table SMA4: Comparison of the baseline model with the model where the community risk
grows exponentially.

No exponential growth rate

(baseline) Exponential growth rate
8(2) 0.22[0.1,0.43] 0.23[0.1,0.44]
g(3) 0.13[0.06,0.24] 0.13[0.07,0.23]
g(4) 0.05[0.02,0.09] 0.05[0.02,0.09]
g(5) 0.04[0.01,0.08] 0.04[0.01,0.08]
8(6) 0.01[0,0.06] 0.01[0,0.06]
mean S| 2.6[2.2,3.5] 2.6[2.1,3.5]
sd Sl 1.3[0.9,2.4] 1.3[0.9,2.5]
2 (10%) 41[7.2,86] 14.4[1,58]
exp growth rate r (r>0) - 0.043 [0.002,0.136]
child rel. sus. 1.96[1.05,3.78] 1.97[1.07,3.67]
older adult rel. sus. 0.17[0.02,0.92] 0.15[0.01,0.85]
max LL® -296.52 -296.05
DIC 611.91 608.9
p-value Exp-Obs® 0.985 0.9847

" Log-likelihood (LL).
*. from a simulation-based %2 test comparing observed and expected distributions of the number of
cases per household size.

3.4 Serial interval

We explored models where the median serial interval depended on the age of the infector
(the shape parameter k was assumed to be independent of the age group; see equation 2).
No significant difference was found (p=0.33; Table SM5).

3.5 Statistical approaches to deal with missing dates of onset

There were 11 households with complete age and diagnostic information, but with missing
day of symptom onset — we only know that the symptom date for those individuals is within
7 days (+/-) from onset in the index case. In general, statistical methods such as data
augmentation can be used to account for such uncertainty. However, here, it is not possible
to know which of those households should be excluded from the analysis on the basis that
the index case was not the first case in the household.

Excluding all those households from the analysis may underestimate transmission rates
while including all of them may overestimate them. We have therefore decided to explore
those two extreme scenarios and find that the 2 approaches give very similar results.

In the baseline scenario, households with missing dates of onset were excluded from the
analysis. Below, we explore the alternative extreme scenario where all those households are
included in the analysis, with all missing onset dates assumed to be in the interval {day 0,...,
day 7}. In this model, we also estimate the probability p. that a household member is a co-
primary case. The missing dates of symptom onset are considered as augmented data. We
explore the joint posterior distribution of augmented data and transmission parameters via
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MCMC sampling. In such data augmentation frameworks, likelihood ratio tests and DIC are
not available for model comparison.

As can be seen in Table SM6, the main impact of including those households in the analysis
is to increase the estimated community risk of transmission. The impact on other
parameters is marginal.

Table SM5: Comparison of the baseline model with the model where the serial interval
depends on the age of the infector.

Baseline SI A-C without relative SI A-C with relative
model age susceptibility age susceptibility

8(2) 0.22[0.1,0.43] 0.24[0.1,0.47] 0.22[0.09,0.42]
8(3) 0.13[0.06,0.24] 0.15[0.07,0.25] 0.13[0.06,0.24]
g(4) 0.05[0.02,0.09] 0.06[0.02,0.11] 0.05[0.02,0.09]
g(5) 0.04[0.01,0.08] 0.05[0.01,0.1] 0.04[0.01,0.08]
g(6) 0.01[0,0.06] 0.01[0,0.06] 0.01[0,0.05]
mean SI- adult 2.6[2.2,3.5] 2.6[2.1,4.4] 2.6[2.2,3.4]
sd Sl-adult 1.3[0.9,2.4] 1.3[0.8,3.9] 1.2[0.9,2.3]
mean Sl- child 2.6[2.2,3.5] 4.3[1.1,9.7] 4.2[1.1,9.7]
sd SI- child 1.3[0.9,2.4] 2.3[0.2,6.4] 2.2[0.2,5.7]
com. risk adult (107)  41[7.2,86] 51.7[9.4,104.1] 45.9[13.6,90.3]

child rel. sus.

older adult rel. sus.

1.96[1.05,3.78]
0.17[0.02,0.92]

2.01[1.06,3.89]
0.16[0.01,0.86]

max LL" -296.52 -304.15 -296.04
DIC 611.91 624.31 612.21
p-value Exp-Obs’ 0.985 0.9774 0.9825

" Log-likelihood (LL).

*. from a simulation-based xz test comparing observed and expected distributions of the number of

cases per household size.
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Table SM6: Comparison of estimates when households with missing onset are excluded from
the analysis (baseline scenario) and when they are included in the analysis.

Exclude (baseline) Include
g(2) 0.22[0.1,0.43]  0.25[0.11,0.47]
g(3) 0.13[0.06,0.24] 0.13[0.06,0.23]
g(4) 0.05[0.02,0.09]  0.06[0.02,0.1]
g(5) 0.04[0.01,0.08] 0.04[0.01,0.08]
g(6) 0.01[0,0.06] 0.01[0,0.06]
mean S| 2.6[2.2,3.5] 2.6[2.2,3.3]
sd SI 1.3[0.9,2.4] 1.2[0.9,2.1]
com. risk (10 41[7.2,86] 53.3[15.7,104.5]
child rel. sus. 1.96[1.05,3.78] 1.89[1.03,3.58]
older adult rel. sus. 0.17[0.02,0.92] 0.14[0.01,0.82]
proba coprimary case (107) - 2.8[1.7,4.4]
p-value Exp-Obs’ 0.985 0.9988

*. from a simulation-based xz test comparing observed and expected distributions of the number of
cases per household size.

3.6 Priors

To ensure good convergence of the MCMC chain, we used the well-documented prior
information that less than P=20% of transmission occur after day 14 (day 0 being defined as
symptom onset in the case) ®. Table SM7 shows that estimates would be unchanged for
P=30% or P=40%. If we do not use such a prior (P=100%), the MCMC chain is sometimes
“trapped” in a local maximum. This area of the parameter space was characterized by i) a
very small maximum log-likelihood (-321.87 as opposed to about -296.5 in Table SM7, where
P<40%); ii) implausible parameter values with the mean serial interval diverging to infinity.
The prior on P was therefore used as a way to avoid this technical issue. An alternative
option would have been to design a more efficient set of MCMC updates so that it would be
possible to move from the local maximum to the real one. However, given the very low log-
likelihood values associated with the local minimum, it seemed more appropriate and simple
to slightly restrict the parameter space in a range of plausible values.

We also explore the impact of the prior on the relative susceptibility parameters by
modifying the variance of the log-normal distribution. Results are presented in Table SM8.
The prior has little impact on the posterior distribution of child relative susceptibility. As
expected, it has a larger impact on the posterior distribution of the relative susceptibility of
older adults since the number of older adults among household contacts is smaller. The p-
values presented in section 3.1 and 3.2 are not affected by those priors.
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Table SM7: Sensitivity of estimates to the prior assumption that less than P=20% of

transmission occur after day 14.

g(2)

83)

g(4)

8(5)

g(6)
mean S|

sd SI

com. risk (10
child rel. sus.
older adult rel. sus.

max LL"

DIC

p-value Exp-Obs$
" Log-likelihood (LL).

P=20% (baseline)

0.22[0.1,0.43]
0.13[0.06,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]

0.01[0,0.06]
2.6[2.2,3.5]

1.3[0.9,2.4]
41[7.2,86]
1.96[1.05,3.78]
0.17[0.02,0.92]
-296.52
611.91
0.985

P=30%

0.23[0.09,0.44]
0.13[0.07,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]

0.01[0,0.06]
2.6[2.2,3.7]

1.3[0.9,2.8]
42.2[9.5,87.2]
1.97[1.06,3.69]
0.15[0.02,0.81]
-296.53
611.77
0.9842

P=40%

0.23[0.09,0.45]
0.14[0.07,0.25]
0.05[0.02,0.09]
0.04[0.01,0.09]

0.02[0,0.06]
2.6[2.2,4.1]

1.3[0.9,3.3]
40.7[8.6,85]
1.94[1.04,3.64]
0.15[0.01,0.82]
-296.49
611.74
0.9848

*: from a simulation-based XZ test comparing observed and expected distributions of the number of

cases per household size.

Table SM8: Sensitivity analysis with respect to the prior on the age-specific susceptibility

parameters.

[2.5%,97.5%]
percentile of prior

8(2)
8(3)
g(4)
8(5)
g(6)
mean Sl
sd SI

com. risk

child rel. sus.

older adult rel. sus.

DIC

p-value Exp-Obs$
" Log-likelihood (LL).

LN(0,1)

[0.14,7.10]

0.23[0.1,0.44]
0.13[0.06,0.23]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.01[0,0.06]
2.7[2.2,3.7]
1.3[0.9,2.7]
41.6[9.2,86.5]
1.91[1.05,3.47]
0.31[0.07,1.04]
612.92
0.9841

LN(0,2)

[0.06,15.99]

0.22[0.09,0.43]
0.13[0.06,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.01[0,0.06]
2.6[2.2,3.5]
1.3[0.9,2.4]
42.3[8.5,88.5]
1.96[1.04,3.85]
0.2[0.02,0.91]
612.38
0.9839

LN(0,3)
(baseline)

[0.03,29.81]

0.22[0.1,0.43]
0.13[0.06,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.01[0,0.06]
2.6[2.2,3.5]
1.3[0.9,2.4]
41[7.2,86)
1.96[1.05,3.78]
0.17[0.02,0.92]
611.91
0.985

LN(0,4)

[0.02,50.40]

0.23[0.1,0.44]
0.13[0.07,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.01[0,0.06]
2.6[2.2,3.4]
1.3[0.9,2.3]
42.3[11.3,87.7]
1.97[1.04,3.73]
0.11[0.01,0.81]
611.74
0.9846

LN(0,5)

[0.01,80.05]

0.23[0.1,0.43]
0.13[0.07,0.23]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.02[0,0.06]
2.6[2.2,3.6]
1.3[0.9,2.5]
41.7[8,88.4]
1.97[1.04,3.66]
0.11[0,0.79]
611.98
0.9853

*. from a simulation-based xz test comparing observed and expected distributions of the number of
cases per household size.
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3.7 Models for infectivity

Along with the baseline model, we explored 7 model variants to evaluate if any of the
following variables were associated with significant increase in infectivity: age of the case,
cough, fever, runny nose sore throat or diarrhea in the case. Table SM9 summarizes the
findings. The likelihood ratio test indicates that none of the effects were significant
predictors of infectivity. Besides, none of the models substantially improved the DIC.

It is possible that some variations in infectiousness are not captured by the age or the
symptoms of the case. The resulting over-dispersion could affect estimates of other
parameters. However, such problem would be expected to affect the final size distribution
(Table 3). This does not seem to be the case since the model with constant infectivity gives a
very good fit to the final size distribution (Table 3).
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Table SM9: Models assessing potential predictors for increased infectivity.

g(2)
83)
g(4)
g(5)
g(6)
mean SI
sd SI
com. risk (10
child rel. sus.
older adult rel. sus.
child rel. inf.
older adult rel. inf.
no cough vs cough
no fever vs fever
No runny nose Vs runny nose
no sore throat vs sore throat
diarrhea vs no diarrhea
max LL
DIC
p-value Exp-Obss

p (likelihood ratio test)
" Log-likelihood (LL).

Baseline

0.22[0.1,0.43]
0.13[0.06,0.24]
0.05[0.02,0.09]
0.04[0.01,0.08]

0.01[0,0.06]

2.6[2.2,3.5]

1.3[0.9,2.4]

41[7.2,86]

1.96[1.05,3.78]
0.17[0.02,0.92]

-296.52
611.91
0.985

Age
0.27[0.11,0.52]
0.18[0.08,0.34]
0.07[0.03,0.14]
0.05[0.02,0.13]

0.02[0,0.1]

2.6[2.1,3.4]

1.2[0.9,2.3]
46.6[11.2,91.7]
1.93[1.01,3.69]
0.14[0.01,0.84]
0.55[0.26,1.05]
0.21[0.02,1.2]

-294.53
611.69
0.989

0.137

Cough Fever
0.23[0.1,0.46]

Runny nose Sore throat

0.22[0.1,0.44] 0.29[0.13,0.56] 0.23[0.1,0.46]
0.14[0.07,0.25] 0.13[0.06,0.24]

0.16[0.07,0.3] 0.14[0.06,0.25]

0.05[0.02,0.09] 0.05[0.02,0.09] 0.06[0.02,0.11] 0.05[0.02,0.1]
0.04[0.01,0.08] 0.04[0.01,0.08] 0.05[0.02,0.11] 0.04[0.01,0.09]

0.01[0,0.05]  0.01[0,0.06]
2.6[2.2,3.4]  2.6[2.1,3.5]
1.2[0.9,2.2]  1.2[0.9,2.4]

45[12.8,89.9]

45.2[9.8,91.5]

0.02[0,0.08]  0.01[0,0.07]
2.6[2.2,3.4]  2.6[2.2,3.4]
1.2[0.9,2.2]  1.3[0.9,2.3]

44.1[11.7,92] 43.7[10.3,91.5]

1.97[1.05,3.82] 1.98[1.05,3.83] 2.02[1.05,3.92] 1.96[1.05,3.72]
0.15[0.01,0.82] 0.15[0.01,0.87] 0.13[0.01,0.76] 0.15[0.01,0.88]

0.36[0.03,1.37]

0.44[0.02,3.01]
0.46[0.18,0.88]

-295.76 -296.4
611.06 612.33
0.9236 0.9529
0.218 0.624

0.85[0.39,1.61]

-295.06 -296.46
611.13 614.14
0.9665 0.9809
0.087 0.729

*. from a simulation-based %2 test comparing observed and expected distributions of the number of cases per household size.

Diarrhea
0.22[0.1,0.42]
0.14[0.06,0.23]
0.05[0.02,0.09]
0.04[0.01,0.08]
0.01[0,0.06]
2.6[2.2,3.5]
1.3[0.9,2.5]
41.7[8.3,87.5]
1.96[1.06,3.74]
0.16[0.01,0.88]

0.99[0.04,27.95]

-296.44
611.78
0.985

0.689
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3.8 Clinical definition of a case
Table SM10 and SM11 show how estimates would change if ILI was used rather than ARI as a
clinical definition of a case.

Table SM10: Estimates obtained when the case definition is ARI (baseline) and when it is ILI.

ARI (baseline) ILl
g(2) 0.22[0.1,0.43] 0.14[0.05,0.29]

8(3) 0.13[0.06,0.24]  0.1[0.05,0.18]

g(4) 0.05[0.02,0.09]  0.04[0.02,0.07]

8(5) 0.04[0.01,0.08]  0.04[0.02,0.08]

g(6) 0.01[0,0.06]  0.0045[0.0001,0.03]
mean Sl 2.6[2.2,3.5] 2.6[2.1,4.6]

sd Sl 1.3[0.9,2.4] 1.4[1,4.5]
com. risk 41[7.2,86] 12.3[1.2,39.7]

childrel.sus.  1.96[1.05,3.78]  2.44[1.36,4.5]

older adult rel. sus. 0.17[0.02,0.92] 0.17[0.01,1.05]

max LU

-296.52 -249.71
DIC 611.91 518.07
p-value Exp-Obs’ 0.985 0.9993

" Log-likelihood (LL).
*: from a simulation-based %2 test comparing observed and expected distributions of the number of
cases per household size.

Table SM11: Odds ratio estimates (and 95% confidence intervals) for onset of ILI in
household contacts. These results come from a logistic GEE model including age group of the
household member and household size (log-transformed).

Odds 95% confidence interval p
ratio Lower Upper
estimate bound bound
Ace of 04y 6.20 2.59 14.83 <0.001
g€ 0 518y 3.00 1.52 5.93 0.002
household
19-50 y 1
member
>51y 0.38 0.05 2,91 0.35
Doubling of household 0.23 0.11 0.49 <0.001
size

3.9 Dataset
Table SM12 and SM13 are the same as Table 2 and Table 3 of the main article but for the
339 households of size 2-6 in which the index case was the first case of the household, with

no missing information on symptoms but in which information on age may be missing.
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Table SM12: Demographic and clinical characteristics of the household contacts in 339

households of size 2-6 in which the index case was the first case of the household and there

was no missing information on symptoms.

Total 0-23 mo 2-4 yr 5-18 yr 19-50 yr >51 yr
Number 968 17 (2%*) 37 (5%*) 237 (34%%) 357 (51%*) 54 (8%*)
Median Age 21
Clinical
symptoms
Fever or 98 (10%’) 2 (12%°) 12 (32%") 39 (16%’) 35 (10%") 2 (4%)
feverish
Cough 127 (13%°) 3 (18%") 11 (30%") 42 (18%") 53 (15%") 1(2%°)
Sore throat | 62 (6%’) 2 (12%) 3(8%) 19 (8%") 31 (9%) 2 (4%")
Runny nose | 57 (6%) 3(18%) 7 (19%°) 20 (8%°) 18 (5%") 2 (4%°)
Diarrhea 19 (2%°) 2 (12%°) 1(3%°) 9 (4%") 7 (2%°) 0 (0%°)
ILI*- no (%) 75 (8%") 2 (12%) 10 (27%") 31 (13%) 26 (7%") 1(2%°)
RR® 4.47[2.45,8.16] | 1.80[1.09,2.96] 1 0.326[0.049,2.153]
[95% CI] (p) (p<0.001) (p=0.02) (p=0.24)
ARIA-no (%) | 100 (10%"°) 2 (12%) 12 (32%") 37 (16%") 39(11%’) 2 (4%°)
RR® 1.07[0.26,4.45] | 2.96[1.83,4.77] | 1.51[1.06,2.16] 1 0.32[0.078,1.32]
[95% Cl] (p)

(p=0.92)

(p<0.001)

(p=0.023)

(p=0.11)

*: Influenza-Like lliness (ILI) defined as fever/feverishness and (cough and/or sore throat).

A: Acute Respiratory Iliness (ARI) defined as at least two of the following signs: fever/feverishness,

cough, sore throat, runny nose.

*. Relative Risk (RR).

Percentages are relative number of index cases or household contacts within that column, except for

the percentages reported in the rows labeled “Male sex”, “Hospitalized” and “Clinical symptoms”
(denoted %§) in which the percentages relate to the number of index cases of household contacts

n ou

within that column with the relevant information and the percentages reported in the rows labeled

“Number” (denoted %*) in which the percentages relate to the total number of index cases or

household contacts with age information.
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Table SM13: Odds ratio estimates (and 95% confidence intervals) for onset of ARl in
household members (excluding those with ARI onset before the index case onset). These

results come from a logistic GEE model including age group of the household member and

household size (log-transformed).

Odds 95% confidence interval p
ratio Lower Upper
estimate bound bound
Ace of 04y 3.97 1.93 7.74 <0.001
g€ 0 518y 1.88 1.12 3.18 0.02
household
19-50 y 1
member
>51y 0.33 0.06 1.66 0.18
Doubling of household size 0.28 0.15 0.52 <0.001

4 Laboratory confirmation of index cases

Confirmed and probable cases were tested using CDC developed assays. The CDC developed
a RT-PCR assay to detect seasonal influenza A, B, H1, H3, and avian H5 serotypes. This assay
was approved by the Food and Drug Administration (FDA) and was distributed to public
health laboratories in December 2008. Primers and probes specific for swine influenza A (H1)
were recently developed and tested for use in a modified version of this assay for the
detection of swine influenza A (H1 and H3) subtypes. In order to develop a test specific for
the detection of novel influenza A(H1N1) virus infection, CDC modified reagents previously
developed for the swine influenza A (H1 and H3) assay. Novel influenza A(H1N1) RT-PCR kits
were distributed to public health laboratories in early May.
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