Supplemental data

total GC lev bases	length: el: masked:	432875 bp 41.34 % 235587 bp	(432875) (54.42 %))	excl N/X-	-runs)
	nur ele	nber of ements*	length occupied	p of	ercentage sequence	==
SINEs:	Alu/B1 B2-B4 IDs MIRs	144 34 70 35 4	18304 3449 11450 2972 376	bp bp bp bp	4.23 0.80 2.65 0.69 0.09	olo olo olo olo
LINEs:	LINE1 LINE2 L3/CR1	130 123 6 1	135855 134605 1208 42	bp bp bp bp	31.38 31.10 0.28 0.01	olo olo olo <mark>olo</mark>
LTR el	ements: ERVL ERVL-MaLRs ERV_classI ERV_classII	144 10 28 27 79	70554 2753 9535 21232 37034	bp bp bp bp	16.30 0.64 2.20 4.90 8.56	alo alo alo alo
DNA el	ements: hAT-Charlie TcMar-Tigge:	11 6 r 2	181: 907 437	2bp bp bp	0.42 0.21 0.10	olo olo olo
Unclas	sified:	13	6642	bp	1.53	00
Total	interspersed	d repeats:	233167	bp	53.86	90
Small	RNA:	14	1250	bp	0.29	olo
Satell Simple Low co	ites: repeats: mplexity:	5 0 0	1226 0 0	bp bp bp	0.28 0.00 0.00	olo olo olo

Figure S1 Repeat analysis of Contig 1. Contig 1 of SHR Y-chromosome *Sry* region with repeat analysis done with <u>http://www.repeatmasker.org/</u>

total GC lev bases	length: vel: masked:	377198 bp 41.85 % 197235 bp	(377198) (52.29 %	bp)	excl N/X-	-runs)
	nu el	mber of ements*	length occupied	p of	ercentage sequence	
SINES:	Alu/B1 B2-B4 IDs MIRs	84 14 31 38 1	9619 1289 4730 3567 33	bp bp bp bp	2.55 0.34 1.25 0.95 0.01	olo olo olo olo
LINEs:	LINE1 LINE2 L3/CR1	100 99 1 0	123589 123495 94 0	bp bp bp bp	32.77 32.74 0.02 0.00	olo olo olo <mark>olo</mark>
LTR el	lements: ERVL ERVL-MaLRs ERV_classI ERV_classII	120 12 9 31 68	61699 2597 3787 21450 33865	bp bp bp bp	16.36 0.69 1.00 5.69 8.98	alo alo alo alo
DNA el	lements: hAT-Charlie TcMar-Tigge	1 1 r 0	14 145 0	5bp bp bp	0.04 0.04 0.00	olo olo olo
Unclas	ssified:	1	1029	bp	0.27	8
Total	intersperse	d repeats:	196081	bp	51.98	olo
Small	RNA:	11	1054	bp	0.28	oło
Satell Simple Low co	lites: e repeats: omplexity:	1 0 0	100 0 0	bp bp bp	0.03 0.00 0.00	olo olo olo

Figure S2 Repeat analysis of Contig 2. Contig 2 of SHR Y-chromosome *Sry* region with repeat analysis done with <u>http://www.repeatmasker.org/</u>

total length: GC level: bases masked:	149399 bp 42.91 % 83452 bp	(149399 (55.86 ⁹	bp ≹)	excl N/X	K-runs)
	number of elements*	length occupied	n P o f	percenta f sequend	ge ce
SINEs: ALUs MIRs	110 106 4	29647 29203 444	bp bp bp	19.84 19.55 0.30	00 010
LINES: LINE1 LINE2 L3/CR1	35 32 3 0	28212 28047 165 0	bp bp bp bp	18.88 18.77 0.11 0.00	olo olo <mark>olo</mark>
LTR elements: ERVL ERVL-Ma ERV_cla ERV_cla	47 4 LRs 11 ssI 32 ssII 0	22627 1439 3580 17608 0	bp bp bp bp	15.15 0.96 2.40 11.79 0.00	alo alo alo alo
DNA elements: hAT-Char TcMar-Ti	16 lie 7 gger 4	2864 997 1397	bp bp bp	1.92 0.67 0.94	olo olo olo
Unclassified:	0	0	bp	0.00	olo
Total intersp	ersed repeats:	83350	bp	55.79	olo
Small RNA:	1	102	bp	0.07	9
Satellites: Simple repeat Low complexit	0 s: 0 y: 0	0 0 0	bp bp bp	0.00 0.00 0.00	olo olo olo

Figure S3 Repeat analysis of human SRY region. *hSRY* flanking sequence for 74570bp 3' and 74829bp 5' of the A of ATG for *hSRY* transcript.

sequer total GC lev bases	nces: length: vel: masked:	1 197889 bp 39.62 % 98586 bp	(197889) (49.82 %)	op (excl N/X-	-runs)
	nu el	mber of ements*	length occupied	pe of	ercentage sequence	5
SINES:	Alu/B1 B2-B4 IDs MIRs	41 27 12 0 2	5242 3083 2011 0 148	bp bp bp bp bp	2.65 1.56 1.02 0.00 0.07	alo alo alo alo alo
LINEs:		32	35022	bp	17.70	00
	LINE1 LINE2 L3/CR1	30 0 2	34866 0 156	bp bp bp	17.62 0.00 0.08	olo olo olo
LTR el	ements: ERVL ERVL-MaLRs ERV_classI ERV_classII	93 5 17 11 60	54808 2007 4678 17213 30910	bp bp bp bp	27.70 1.01 2.36 8.70 15.62	olo olo olo olo
DNA el	ements: hAT-Charlie TcMar-Tigge	4 2 r 2	702 418 284	2bp bp bp	0.35 0.21 0.14	olo olo olo
Unclas	ssified:	2	2006	bp	1.01	olo
Total	intersperse	d repeats:	97780	bp	49.41	00
Small	RNA:	0	0	bp	0.00	oło
Satell Simple Low co	ites: e repeats: omplexity:	5 0 0	806 0 0	bp bp bp	0.41 0.00 0.00	olo olo olo

Figure S4 Repeat analysis of mouse Sry region. Analysis of mouse *Sry* sequence for 99311bp 3' and 98578bp 5' the A of ATG for the *mSry* transcript.

	Sry1	Sry2	Sry3A	Sry3B	Sry3BII	Sry3C	Sry4	Sry4A
Sry1	-	421	420	11,600	11,600	11,600	11,600	10,538
Sry2	421	-	420	421	420	424	421	421
Sry3A	8,048	420	-	8,048	8,048	8,048	8,048	8,048
Sry3B	11,600	421	420	-	14,949	14,224	14,675	10,538
Sry3BII	11,600	421	420	15,235	-	14,236	14,675	10,538
Sry3C	11,600	421	420	14,138	13,981	-	14,675	10,538
Sry4	11,600	421	420	14,792	14,506	14,224	-	10,538
Sry4A	10,555	421	420	10,570	10,532	10,719	10,694	-

	Sry1	Sry2	Sry3A	Sry3B	Sry3BII	Sry3C	Sry4	Sry4A
Sry1	-	12,822	1,579	1,974	1,969	12,766	957	989
Sry2	12,763	-	1,579	1,974	1969	30,907	957	989
Sry3A	1,579	1,579	-	1,579	1,579	1,579	957	989
Sry3B	1,975	1936	1,579	-	17,731	1,971	15,252	15,407
Sry3BII	1,975	1936	1,579	15,482	-	1,971	20,389	22,094
Sry3C	12,763	24,564	1,579	1,974	1,969	-	957	957
Sry4	968	924	959	15,482	23,197	961	-	43,175
Sry4A	968	924	959	15,456	23,634	961	42,847	-
C	•	•	•	•		•		

	Sry1	Sry2	Sry3A	Sry3B	Sry3BII	Sry3C	Sry4	Sry4A
Sry1	-	13,243	1,999	13,574	13,569	24,366	12,557	11,527
Sry2	13,184	-	1,999	2,395	2,389	31,331	1,378	1,410
Sry3A	9,627	1,999	-	9,627	9,627	9,627	9,005	9,037
Sry3B	13,575	2,357	1,999	-	32,680	16,195	29,927	25,945
Sry3BII	13,575	2,357	1,999	30,717	-	16,207	35,064	32,632
Sry3C	24,363	24,985	1,999	16,112	15,950	-	15,632	11,495
Sry4	12,568	1,345	1,379	30,274	37,703	15,185	-	53,713
Srv4A	11,523	1,345	1,379	26,026	34,166	11,680	53,541	-

Figure S5 Conservation analysis of the *Sry* **copies.** A) Base pairs conserved 5' of the A of ATG. Highlighted in red are constructs involving Sry1 where conservation goes to the end of the contig. Highlighted in cyan are those sequences that have a 6,809 bp transposable element inserted causing a disruption of homology that picks back up for 7,647 bp. Numbers in red are those that define the size fragment for phylogenetics. B) Base pairs conserved 3' of the A of ATG, with the green highlighted box showing a 6,386 bp insertion disrupting homology. C). Total conserved fragment length 5' and 3' of the A of ATG. At the top of each chart is the gene that the sequence was aligned to the respective *Sry* on the side.

Α

Figure S6 Phylogenetic tree of the maximally conserved fragment of Sry copies.

Phylogenetic tree using *Sry* genes of the maximum conserved fragment based on contig analysis of Figure S5. Numbers next to each node represent the percent of the 500 bootstrap phylogenies that were identified similar to the one shown in the figure.

B

Figure S7 PCR products after amplification with JP1R and JF8L specific primers. **A**) Gel of PCR amplicons from SHR and WKY genomic DNA, showing the presence of Sry3BII (4220bp, band 1), Sry4A (2031 bp, band 3), and Sry4 (2003, band 4). Band 2 is believed to be nonspecific amplification of both Sry4A and 4 based on primer mispriming around 400 base pairs upstream where JF8L should bind. **B**). Digestion of each band with AfIII. Bands 1 and 3 when digested with *AfI*II did not digest since there is no *AfI*II site found in the DNA fragments produced when amplifying either Sry3BII or Sry4A. Band 4 partially digested, suggesting further proof that it is Sry4 which contains an *AfI*II site. Band two showed similar digestion pattern as seen in band 4.

Med14Y Med14X	AGCCAGGCTGTGCGCCGCCATGGCTCCAGTGCAGCTGGACAACCACCAGCTCATCCCTCC ATGGCCCCAGTGCAGCTGGAGAACCACCAGCTGATCCCTCC ***** **************************
Med14Y Med14X	TGGCCGCGGAGGTGGCAGAGGTGGCGGCGAAGGCAGCAGCAGGGACTTGGTGTCTGCCCC TGGCGGCGGAGGTGGCAGCGGTGGCGGTGGAGGCAGCAGCAGCGGCTCTGCGTCTGTCCC **** ******************************
Med14Y Med14X	GGCTCCCCATCGCCCGGAGCCATGGCGGTGGCAGCAGCCTCCGCGACTACCCCTGG GGCTCCCCGCCTCCTGGAGCCGCTGTGGCGGCGGCAGCTGCGGCTGCTGCTAGCCCTGG ********* * * ** ***** * ****** * ******
Med14Y Med14X	ATACCGGCTTAGCACACTCATCGAATTTTTGCTGCACAGGGCCTACTCAGAGCTTATGGT ATACCGGCTTAGCACGCTCATCGAATTTCTGCTGCACCGGGCCTACTCCGAGCTTATGGT ********************************
Med14Y Med14X	GTTGACGGACTTCTTGCCAAGGAAATCTGATGTGGAAAGGAAAATAGAAATTGTACAGTT GTTGACGGACTTATTGCCAAGAAAATCGGATGTGGAAAGGAAAATAGAAATTGTACAGTT ***********************************
Med14Y Med14X	TGCTAGCCGGACACGTCAACTCTTCGTTCGGTTATTAGCTTTAGTAAAATGGGCCAGTGA TGCTAGCCGGACACGTCAACTCTTCGTTCGATTATTAGCTTTAGTAAAATGGGCCAATGA **********************************
Med14Y Med14X	TGCTGGCAAGGTAGAAAAGTGTGCG <mark>ATGATCACAAGCTTTTTAGATCATCAAGCCATCTT TGCTGGCAAAGTAGAAAAGTGTGCGATGATCTCGAGCTTTTTAGACCAGCAAGCCATCTT *********.*************************</mark>
Med14Y Med14X	ATTTGTGGATACCGCTGACCGCTTGGCCTCCTTAGCTAGAGATGCCCTGGTCCATGCCTG ATTTGTGGATACTGCTGACCGCTTGGCCTCCTTAGCTAGAGATGCCCTGGTCCATGCACG ************ ************************
Med14Y Med14X	CCTGCCTAGTTTTGCTATCCCATATGCCATTGATGTACTGACTACTGGCTCTTATCCAAG CCTGCCTAGTTTTGCTATCCCATATGCCATTGATGTACTGACTACTGGTTCTTATCCACG **********************************
Med14Y Med14X	GCTTTCAACCTGCATCAGGGACAAAATTATTCCTCCAGACCCTATTACCAAGATTGAGAA ACTTCCAACCTGCATCAGAGACAAAATTATTCCTCCAGACCCAATTACCAAAATTGAGAA .*** ********************************
Med14Y Med14X	ACAAGCCGCACTTCATCAGCTTAATCAGATTCTTAGACATAGGCTTGTAACAGCAGATCT ACAAGCCACACTTCATCAGCTTAATCAGATTCTTAGACATAGGCTTGTAACGACAGATCT *******.****************************
Med14Y Med14X	TCCTCCACAGCTAGCAAATCTTACAGTGG <mark>CGAATGGCCGTGTGAAGTTTCGAGTTGAAAG</mark> TCCTCCACAGCTAGCAAATCTTACAGTGG <mark>CAAATGGCCGTGTGAAGTTTCGAGTTGAAGG</mark> *********************************
Med14Y Med14X	AGAATTTGAAGCAACCTTGACAGTGATGGGTGATGACCCAAAAGTCCCATGGTGTCTTCT AGAATTTGAAGCAACCTTGACGGTGATGGGTGATGACCCAGAAGTCCCATGGCGTCTTCT

Med14Y Med14X	CAAGCTAGAAATTCTAGTTGAGGATAAGCAAACGGGAGATGGGCGAGCTTTGGTTCATAG CAAGCTAGAAATTCTAGTTGAGGATAAGGAAACAGGAGATGGGCGAGCTTTGGTTCATAG ***********************************
Med14Y Med14X	CATGCAAATTGACTTTATCCATCAGCTAGTCCAGTCCAG
Med14Y Med14X	TCTTCAGGACATGTACAACTGCCTGCATTTTTTCTGCTTATCGCTTCAATTAGAAGTATT TCTTCAGGACATGTACAACTGCCTACATTGTTTCTGCTTATCACTTCAATTAGAAGTCTT **********************************
Med14Y Med14X	ACATTCCCAGACGCTAATGTTAATCAGAGAGAGGTGGGGAGACCTTGTACAGGTGGAAAG ACATTCCCAGACACTAATGTTAATCCGAGAGAGGTGGGGAGACCTTGTACAGGTGGAAAG ***********
Med14Y Med14X	ATACCGTGCTGGAAAGTGCCTCTCGGTTTGGAGCCAACAGGTTCTAGGGAAAAA ATACCATGCTGGAAAGTGCCTCTCCCTCTCAGTTTGGAATCAACAGGTTCTAGGGAGAAA *****
Med14Y Med14X	AACAGGCACAGCATCTGTTCACAAAGTTACAATTAAAATCGATGAGAATGATGTCTCCAA AACAGGCACAGCATCTGTTCACAAAGTTACAATTAAAATCGATGAGAATGATGTCTCCAA ***********
Med14Y Med14X	GCCTTTACAGATTTTCCACGATCCTCCTTTACCAGCTTCTGATTCTAAATTAGTAGAAAG GCCTTTACAGATTTTTCATGATCCTCCTTTGCCAGCTTCTGATTCTAAATTAGTAGAAAG ***************** ** ************
Med14Y Med14X	AGCCATGAAG <mark>ATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACTCACG AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACGCTAG ********</mark>
Med14Y Med14X Med14Y Med14X	AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACTCACG AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACGCTAG ************************************
Med14Y Med14X Med14Y Med14X Med14Y Med14X	AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACTCACG AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACGCTAG ************************************
Med14Y Med14X Med14Y Med14X Med14Y Med14X Med14Y Med14X	AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACTCACG AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACGCTAG ************************************
Med14Y Med14X Med14Y Med14X Med14Y Med14X Med14Y Med14X	AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACTCACG AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACGCTAG ************************************
Med14Y Med14X Med14Y Med14X Med14Y Med14X Med14Y Med14X Med14Y Med14X	AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACTCACG AGCCATGAAGATTGACCACTTATCAATAGAAAAGCTCCTGATTGACAGTGTACACGCTAG ************************************

Med14Y Med14X	TCCCATTGGTAGGCTTTCTAAGAACAAGTTGTTTATTAAACTTACTCGCCTTCCGCAGTA TCCCATTGGAAGCCTGTCTAAGAATAAGCTGTTTATTAAACTTACTCGCCTTCCACAGTA **********
Med14Y Med14X	CTACATTGTTGTGGAAATGCTTGAGGTTCCTAATAAGCCCACCCA
Med14Y Med14X	TTACTTTATGTCTGTGAGTACTGCAGATGGCGAGAACACACCTGTCATGGCACTGCTGCT TTACTTTATGTCTGTGAGTACTGCAGATCGTGACGACAGCCCTGCCATGGCACTGCTGCT *******************************
Med14Y Med14X	GCAGCAATTCAAGGACAACATCCAGGACTTGATGTCCTATACAAAGATTGGAAAACAGAC GCAGCAATTCAAGGACAACATCCAGGACTTGATGTCCTGTACAAACACTGGGAAACAGAC ****************************
Med14Y Med14X	CATAATTGGTACCAAGCACAAC AAGAACTGGTACCAAGCACAAG .* ** ********************************
Med14Y Med14X	CAAACAATCAGGAGAAATGTGTGCCTTCAATAAAGTTCTAGCTCACTTTGTCGCTATGTG CAAACGATCAGGAGAAACGTGTGCCTTCAATAAAGTTCTAGCTCACTTTGTCGCTATGTG *****.*********
Med14Y Med14X	TGACACCAACATGCCATTTGTAGGACTTCGATTGGAG <mark>TTGTCCAACCTGGAGATACCACA</mark> TGATACCAACATGCCATTTGTAGGACTTCGATTGGAG <mark>TTGTCCAATTTGGAGATACCACA</mark> *** *********************************
Med14Y Med14X	TCAGGGAGTACAAGTGGAAGGTGACGGCTTCAGCTATGCAATTCGCTTACTAAAAATTCC TCAGGGAGTGCAAGTGGAAGGTGATGGCTTCAGCCATGCAATTCGCTTATTAAAAATTCC *********.*************************
Med14Y Med14X	TCCCTGTAAGGGAATAAGTGAGGAAACGCAGAAGGCTCTGGACTGCTCTTCTTGATTG TCCCTGTAAAGGAATCAGTGAGGAAACACAAAAGGCCCTGGACCGTTCTCTTCTTGATTG ******** ***************************
Med14Y Med14X	CACTTTCCGATTACAAGGTAGAAATAACCGCACATGGGTGGCAGAGTTAGTGTTTGCAAA CACTTTCCGATTACAAGGTAGAAATAACCGCACATGGGTGGCAGAGTTAGTGTTTGCAAA **********************************
Med14Y Med14X	TTGTCCTCTTAATGGCACTTCTATCAGGGAGCAAG <mark>GACCATCCAGACATGTTTACCTGAC</mark> TTGTCCGCTTAATGGCACTTCTACCAGGGAGCAAG <mark>GACCATCCCGACATGTTTACCTGAC</mark> ****** ******************************
Med14Y Med14X	ATATGAAAATCTGTTGTCTGAACCTGTTGGTGGTAGAAGAGTAGTTGAAATGTTTCTTAA ATATGAAAATCTGTTGTCTGAACCTGTTGGCGGTAGAAAGTAGTTGAAATGTTTCTTAA *******************************
Med14Y Med14X	TGACTGGAGTAGCATTTCCCGATTATATGAGTGTGTGTGT
Med14Y Med14X	AGAAATACCTGCTCATCTGAATTTTTTCTCAGAAGTTTGTGTTTACAATTATCGAAAACT AGAAATACCTGCTCATCTGAATATTTTCTCAGAAGTTCGTGTTTATAATTATCGCAAACT

Med14Y Med14X	TATCTTGTGTTATGGAACCACCAGAGGAAGCTCA <mark>ATCAGTATCCAGTGGAATTCCATTCA</mark> TATCTTGTGTTATGGAACCACCAAAGGAAGTTCA <mark>ATTAGTATCCAGTGGAATTCCATTCA</mark> ************************************
Med14Y Med14X	TCAGAAATTTTACATTTCTTTGGGAACAGTTGGCCCAAACTCAGGTTGCAGTAATTGTCA TCAGAAATTTCACATTTCTTTGGGAACAGTTGGCCCAAACTCAGGTTGCAGTAACTGTCA ********** **************************
Med14Y Med14X	TATTACCATTCTCCATCACCTTCAAGAAATGTTCAACAAAACACCAAATGTGGTCCAGTT CAATACCATTCTCCATCAGCTTCAAGAAATGTTCAACAAAAACACCAAATGTGGTTCAGTT *:**********************************
Med14Y Med14X	ATTACAGGTTTTGTTTGATACTCAGGCACCATTAAATGCCATCAACAAACTCCCTACTGT ATTACAGGTTTTGTTCGATACTCAAGCACCATTAAATGCCATCAACAAACTCCCTACTGT *******
Med14Y Med14X	TCCAGTGCTGGGCTTGACTCAGAGAAGTAACACCGCCTACCAGTGTTTCTCCATATTACC CCCAATGTTGGGCTTGACTCAGAGAACTAACACCGCCTACCAGTGTTTCTCCATATTACC ***.** ******************************
Med14Y Med14X	ACATTCATCCACCCACATCAGATTGGCCTTCAGGAACATGTACTGCATTGATATATACTG ACAATCATCCACCCACATCAGACTGGCCTTCAGGAACATGTACTGCATTGACATATACTG ***:*********************************
Med14Y Med14X	CCTTAGTCACGGTGTCGTGGCAGTACGGGACGGTGCCTATAGTCTTTGTGATAACAGCAA CCGTAGTCGAGGTGTCGTGGCGATACGGGACGGTGCCTATAGTCTTTTTGATAACAGCAA ** ******************************
Med14Y Med14X	GTTAGTTGAAGGCTTCTGTCCTGCACCAGGATTAAAG <mark>ACTTTCCTGAACATGTTTGTTG-</mark> GTTAGTTGAAGGCTTCTATCCTGCACCAGGATTAAAG <mark>ACTTTCCTGAACATGTTTGTGGA</mark> ***********************************
Med14Y Med14X	ATGCTCAGAAAAGAGCTTTAAAGGAGGATGATTACCCTCCTTCTCCTAT TAGCAATCAAGATGCTCGGAGAAGATCTGTCAATGAGGATGATAACCCTCCTTCTCCTAT ****** ** ** ** ** ** ** ** **********
Med14Y Med14X	AGGAGGAGATAGGACGGACTCTTTAATATCACGACTCCAGCCACCTCAGCAACAG <mark>CCATT</mark> AGGAGGTGACATGATGGACTCTTTAATATCACAGCTCCAGCCACCTCAGCAACAG <mark>CCATT</mark> *****:** * ** ************************
Med14Y Med14X	TCCAAAGCAGCCAGGGATATCGGGCGCTTACCCTCTTACTTCATCTCCTACATCCTATCG TCCAAAGCAGCCAGGGACATCAGGCGCTTACCCTCTTACTTCACCCCCTGCATCCTATCA *****************************
Med14Y Med14X	CAGCCCAGTTAATCAGCCCCCCTCTATGATGCACACACAGCCTCCAGCAGCACAGTTAATCAGTCCCCCTCTATGATGCACACACAGTCTCCAG <mark>GAAATCTGCATGC</mark> ****.********************************
Med14Y Med14X	TGCCAGCTCCCCAGTGGGGCTTTGAGAGCCCCATCACCAGCGTCATTTGTTCCAACTCC
Med14Y Med14X	G TCCCCCGTCCTCGCATGGAATCTCAATAGGACCAGGGGCCAGTTTTGCTAGTCCACATG *

Med14Y Med14X	AGCCCTTGACTCTAGTTCTCCATACACTCTTATGTCATCAAGTGGAAGCCCTTGACCCTAGTTCTCCATACACTATGGTGTCACCAAGTGGACGAGCAGGAAACTG
Med14Y Med14X	GGGTCTCCTCCAGTGTTTGTGTCCAGACTCTCACCAGCAACCCCTTTGCCTGGAAT GCCTGGGTCTCCTCAAGTGTCGGGACCCTCACCAGCAACCCGTTTGCCCGGAAT **********************************
Med14Y Med14X	GTCACCAGCTAACCCATCTCTGCATTCAACTGTCCCAGATGTTTTTCATTCCCCTCGAGC GTCACCAGCTAACCCATCTCTGCATTCTCCTGTTCCAGATGTTTCTCATTCCCCTCGAGC **********************************
Med14Y Med14X	TGGCACAAGTTCCCAGACAATGCCAACCAACATGTCTCCACCTCGAAAACTACCTCAGCG AGGCACAAGTTCCCAGACAATGCCAACCAACATGCCTCCACCTCGAAAACTACCTCAGCG :******
Med14Y Med14X	CTCCTGTGCAGCATCTGTACCCACCATTCTCACTCACAGTGCCTTGAACATCTTACTGCT CTCCTGGGCAGCATCCATACCCACCATTCTCACTCATAGTGCCTTGAACATCTTACTGCT ****** ******************************
Med14Y Med14X	ACCTTCTCCAATGCCAGGCCTTGTGCCTGGCCTGGCAGGTAGTTACCTTTGTTCCCCACT ACCCTCTCCAACGCCAGGCCTTGTGCCTGGCCTG
Med14Y Med14X	TGAGAGATTCCTTGGGTCTGTCATCATGAGACGACCACCTTCAAAGAATTATCCAACAGGA CGAGAGATTCCTTGGCTCTGTCATCATGAGACGACCACCTTCAAAGAATTATCCAACAGGA **************
Med14Y Med14X	GACA TTGCAGCTGATCAGTTCCAATGAACCTGGTGTAATCATGTTCAAGACAGATGCCCT AACC TTGCAGCTGATCAATTCCAATGAACCTGGTGTAATCATGTTCAAGACAGATGCCCT ***
Med14Y Med14X	GAAATGCAGAGTAACCCTTAGTCCCCAAACCAACCAGACCCTTCAGCTAAAAGTGACACC GAAGTGCAGAGTAGCCCTTAGTCCCAAAACCAACCAGACCCTTCAGCTAAAAGTGACACC *** *********
Med14Y Med14X	TGAAAATGTAGGACAGTGGAAACCTGATGAGCTTCAAGTTTTGGAGAAATTCTTTGAAAC TGAAAATGCAGGACAATGGAAACCTGATGAGCTTCAAGTTTTGGAGAAATTCTTCGAAAC ******* ***************************
Med14Y Med14X	AAGAGTTGCAGGACCACCATTTAAAGCCAACACACTTATAGCCTTCACCAAGCTGTTGGG AAGAGTTGCAGGACCACCGTTTAAAGCCAACACACTTATAGCCTTCACCAAGCTGTTGGG ****
Med14Y Med14X	AGCGCCAACACACATCCTCCGGGACTGTGTGCATATAATGCAGTTGGAGGTG AGCACCGACACACATTCTCCGGGACTGTGTGCATATCATGAAGTTGGAGCTG *** ** ******** *********************
Med14Y Med14X	CCAAGCAACCCAGCTGAAATGGAACGTTCAATTTTGCCTCACCATCCCTCCTAGTGCACC CCAAGCAACGCAGCTAAAGTGGAATGTTCAATTTTGCCTCACCATCCCTCCC
Med14Y Med14X	ACCAATTGCAGCTCCTGGGACACCAGCCGTGGTCCTGAAATCCAAAATGCTGTTTTT <mark>CT</mark> ACCCATTGCACCTCCTGGGACACCAGCTGTGGTCCTGAAATCCAAAATGCTCTTTTTT <mark>CT</mark> ***.****** ***************************

Med14Y Med14X	MAPVQLDNHQLIPPGRGGGRGGGGGGGSSRDLVSAPAPPSPG-AMAVAAASATTPGYRLSTL MAPVQLENHQLIPPGGGGGSGGGGGGSSSGSASVPAPPPPGAAVAAAAAAASPGYRLSTL ******	59 60
Med14Y Med14X	IEFLLHRAYSELMVLTDFLPRKSDVERKIEIVQFASRTRQLFVRLLALVKWASDAGKVEK IEFLLHRAYSELMVLTDLLPRKSDVERKIEIVQFASRTRQLFVRLLALVKWANDAGKVEK ******************	119 120
Med14Y Med14X	CAMITSFLDHQAILFVDTADRLASLARDALVHACLPSFAIPYAIDVLTTGSYPRLSTCIR CAMISSFLDQQAILFVDTADRLASLARDALVHARLPSFAIPYAIDVLTTGSYPRLPTCIR	179 180
	**** **** *****************************	
Med14Y Med14X	DKIIPPDPITKIEKQAALHQLNQILRHRLVTADLPPQLANLTVANGRVKFRVEREFEATL DKIIPPDPITKIEKQATLHQLNQILRHRLVTTDLPPQLANLTVANGRVKFRVEGEFEATL ************************************	239 240
Med14Y	TVMGDDPKVPWCLLKLEILVEDKQTGDGRALVHSMQIDFIHQLVQSRLFADEKPLQDMYN	299
Med14X	TVMGDDPEVPWRLLKLEILVEDKETGDGRALVHSMQIDFIHQLVQSRLFADEKPLQDMYN *******:*** **************************	300
Med14Y	CLHFFCLSLQLEVLHSQTLMLIRERWGDLVQVERYRAGKCLSVWSQQVLGKKTGTASV	357
Med14X	CLHCFCLSLQLEVLHSQTLMLIRERWGDLVQVERYHAGKCLSLSVWNQQVLGRKTGTASV *** *********************************	360
Med14Y	HKVTIKIDENDVSKPLQIFHDPPLPASDSKLVERAMKIDHLSIEKLLIDSVHSRAHQKLQ	417
Med14X	HKVTIKIDENDVSKPLQIFHDPPLPASDSKLVERAMKIDHLSIEKLLIDSVHARAHQKLQ ***********************************	420
Med14Y	ELKAILRSFNANENSSIETALPALIVPILEPCGNSECLHIFVDLHSGMFQLMLYGLDQAT	477
Med14X	ELKAILRSFNANENSSIETALPALIVPILEPCGNSECLHIFVDLHSGMFQLMLYGLDQAT ************************************	480
Med14Y	LEDMEKSLNDDMKRIIPWIQQLKFWLGQQRCKQSIKHLPAITTETLQLANYSTHPIGRLS	537
Med14X	LEDMEKSLNDDMKRIIPWIQQLKFWLGQQRCKQSIKHLPTITTETLQLANYATHPIGSLS ***********************************	540
Med14Y	KNKLFIKLTRLPQYYIVVEMLEVPNKPTQLSYKYYFMSVSTADGENTPVMALLLQQFKDN	597
Med14X	KNKLFIKLTRLPQYYIVVEMLEVPNKPTQLSYKYYFMSVSTADRDDSPAMALLLQQFKDN ************************************	600
Med14Y	IQDLMSYTKIGKQTIIGTKHNLSDDPCPVECKKAKQSGEMCAFNKVLAHFVAMCDTNMPF	657
Med14X	IQDLMSCTNTGKQTRTGTKHKLSDDSCPVECKKAKRSGETCAFNKVLAHFVAMCDTNMPF ****** *: **** ***********************	660
Med14Y	VGLRLELSNLEIPHQGVQVEGDGFSYAIRLLKIPPCKGISEETQKALDCSLLDCTFRLQG	717
Med14X	VGLRLELSNLEIPHQGVQVEGDGFSHAIRLLKIPPCKGISEETQKALDRSLLDCTFRLQG ************************************	720
Med14Y	RNNRTWVAELVFANCPLNGTSIREQGPSRHVYLTYENLLSEPVGGRRVVEMFLNDWSSIS	777
Med14X	RNNRTWVAELVFANCPLNGTSTREQGPSRHVYLTYENLLSEPVGGRKVVEMFLNDWSSIA ***********************************	780
Med14Y	RLYECVLEFAHSLPEIPAHLNFFSEVCVYNYRKLILCYGTTRGSSISIQWNSIHQKFYIS	837
Med14X	RLYECVLEFARSLPEIPAHLNIFSEVRVYNYRKLILCYGTTKGSSISIQWNSIHQKFHIS ************************************	840
Med14Y	LGTVGPNSGCSNCHITILHHLQEMFNKTPNVVQLLQVLFDTQAPLNAINKLPTVPVLGLT	897
Med14X	LGTVGPNSGCSNCHNTILHQLQEMFNKTPNVVQLLQVLFDTQAPLNAINKLPTVPMLGLT ***********************************	900
Med14Y	QRSNTAYQCFSILPHSSTHIRLAFRNMYCIDIYCLSHGVVAVRDGAYSLCDNSKLVEGFC	957
Med14X	QRTNTAYQCFSILPQSSTHIRLAFRNMYCIDIYCRSRGVVAIRDGAYSLFDNSKLVEGFY **:**********************************	960
Med14Y	PAPGLKTFLNMFVDAQKRALKEDDYPPSPIGGDRTDSLISRLQPPQQQPFPKQPGI	1013
Med14X	PAPGLKTFLNMFVDSNQDARRRSVNEDDNPPSPIGGDMMDSLISQLQPPQQQPFPKQPGT ************************************	1020
Med14Y	SGAYPLTSSPTSYRSPVNQPPSMMHTQPPG	1043
Med14X	SGAYPLTSPPASYHSTVNQSPSMMHTQSPGNLHAASSPSGALRAPSPASFVPTPPPSSHG ******* *:*:*:*:****	1080

Figure S9 Med14Y protein. Protein sequences coded by the mRNA of figure S8 as determined using ExPASy translate tool aligned using ClustalW. * indicated conserved amino acids, : functionally conserved, and . slightly conserved.

Med14Y Med14X	PPVFVSRLSPATPLPGMSPANPSLH ISIGPGASFASPHGALDPSSPYTMVSPSGRAGNWPGSPQVSGPSPATRLPGMSPANPSLH *** *****::* ** : ** *****************	1085 1140
Med14Y Med14X	STVPDVFHSPRAGTSSQTMPTNMSPPRKLPQRSCAASVPTILTHSALNILLLPSPMPGLV 1 SPVPDVSHSPRAGTSSQTMPTNMPPPRKLPQRSWAASIPTILTHSALNILLLPSPTPGLV 1 *.**** ******************************	1145 1200
Med14Y Med14X	PGLAGSYLCSPLERFLGSVIMRRHLQRIIQQETLQLISSNEPGVIMFKTDALKCRVTLSP 1 PGLAGSYLCSPLERFLGSVIMRRHLQRIIQQETLQLINSNEPGVIMFKTDALKCRVALSP 1 ************************************	1205 1260
Med14Y Med14X	QTNQTLQLKVTPENVGQWKPDELQVLEKFFETRVAGPPFKANTLIAFTKLLGAPTHILRD 1 KTNQTLQLKVTPENAGQWKPDELQVLEKFFETRVAGPPFKANTLIAFTKLLGAPTHILRD 1 :****************	1265 1320
Med14Y Med14X	CVHIMQLEVFPDQATQLKWNVQFCLTIPPSAPPIAAPGTPAVVLKSKMLFFLQLTQKTSV 1 CVHIMKLELFPDQATQLKWNVQFCLTIPPSAPPIAPPGTPAVVLKSKMLFFLQLTQKTSV 1	1325 1380
Med14Y Med14X	PPQEPVSIIVPIIYDMASGITQQADIPRQQNSSVAAPMMVSTILKRFAEMNPPRQGECTI 1 PPQEPVSIIVPIIYDMASGTTQQADIPRQQNSSVAAPMMVSNILKRFAEMNPPRQGECTI 1 **********************	1385 1440
Med14Y Med14X	FAAVCDLMAHLTLPPGGCP 1404 FAAVRDLMANLTLPPGGRP 1459 **** ****:****** *	

Figure S9 Med14Y protein. Protein sequences coded by the mRNA of figure S8 as determined using ExPASy translate tool aligned using ClustalW. * indicated conserved amino acids, : functionally conserved, and . slightly conserved.

	N-terminus
Human SHR/Akr Mouse	4H-Q MQSYASAMLSVFNSDDYSPAVQENIPALRRSSSFLCTESCNSKYQCETGENSKGNVQDRV MEGHV MEGHV ::.:*
	HMG BOX
Human SHR/Akr Mouse	21R-H 38H-Q KRPMNAFIVWSRDQRRKMALENPRMRNSEISKQLGYQWKMLTEAEKWPFFQEAQKLQAMH KRPMNAFMVWSRGERRKLAQQNPSMQNSEISKQLGYQWKSLTEAEKRPFFQEAQRLKTLH KRPMNAFMVWSRGERHKLAQQNPSMQNTEISKQLGCRWKSLTEAEKRPFFQEAQRLKILH ******::*:*::::::::::::::::::::::::::
	Hinge Bridge C-terminus
Human SHR/Akr Mouse	76P-T 83P-8 98L-V REKYPNYKYRPRRKAKMLPKNCSLLPADPASVLCSEVQLDNRLYRDDCTKATHSRM REKYPNYKYQTHRRVKVPQRSYTLQREVASTKLYNLLQWDNNLHTIIYGQDWARAAHQSS REKYPNYKYQPHRRAKVSQRSGILQPAVASTKLYNLLQWDRNPHAITYRQDWSRAAHLYS ********:*:::::::::::::::::::::::::::
Human SHR/Akr Mouse	EHQLG-HLPPINAASSPQQRDR KNQKSIYLQPVDIPTGYPLQQKQQHQQQQ KNQQSFYWQPVDIPTGHLQQQQQQQQQQQFHNHHQQQQQFYDHHQQQQQQQQQQQQFHDH ::* . : *:: .:. :::
Human SHR/Akr Mouse	HQQKQQFHDHHQQQQQQFHDHHHHQEQQFHDHHQQQQQQFHDHQQQQQQQQQQ
Human SHR/Akr Mouse	YSHWTKHVHLQQQQQQQHQFH KQQFHDHHHHQQQQQQFHDHQQQQQFHDHQQQQQHQFHDHPQQKQQFHDHPQQQQQQFHDHH
Human SHR/Akr Mouse	HQQQQKQQFHDHHQQKQQFHDHHQQQQQQQQQQQQQQQQQ
Human SHR/Akr Mouse	L QLTYLLTADITGEHTPYQEHLSTALWLAVS

Figure S10 Human, Rat, and Mouse Sry protein alignments Sequence alignment of the rat Sry consensus from SHR/Akr aligned to Sry from mouse and human showing the location of the N-terminus (red), HMG box (blue), Hinge (green), bridge (magenta) and C-terminus (yellow). Amino acids differing in the multiple rat copies outside of the Q-rich region can be seen in red with the amino acid alternatives shown next to the number.

Figure S11 Mutations to the HMG box of Sry1 based on the multiple Sry copies. A). Energy minimized structures of the multiple models aligned together on DNA (gray). B). Energy of each model in **A** over the molecular dynamic simulation.

Figure S12 Role amino acid 21 change to interaction with Calmodulin. A). Modeled interaction between Sry and Calmodulin showing the location of amino acid 4 and 21 (red) both of which differ between all other rat Sry proteins and Sry β . B). Molecular dynamic simulations of the modeled Sry α -Calmodulin interaction (A) and with amino acid 21 changed from an Arg to His leading to a decreased stability of the protein.