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WEB APPENDIX A
This appendix shows how to find w; for Dorfman’s protocol when Z, = 1. We first express the
conditional mean w,, as
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where we use the standard assumption that test outcomes are conditionally independent given the
true outcomes (Litvak et al. 1994). Similarly, in the denominator of (1), we have
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Substituting (2) and (3) into (1) results in
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Equation (4) is very difficult to compute for large group sizes, because the number of summands
within it increases exponentially as the group size increases (e.g., there are 2" terms to sum in the
denominator for group k). Fortunately, we can reformulate the numerator and denominator to make

Equation (4) computationally feasible for large group sizes. The denominator can be written as
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where ¢ = 1 — n — 6 and we make use of the relation
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Using the same technique, the numerator of (4) can be re-written in a similar manner leading to

~ 1 ~ ~
NPl (Yo = yu | Vi = 1) H > PYo =y | Yo = o) P(Yor = Gie)
=1 Gy =0
Wy, = I I, 1 - : (5)
90]/;[1 P(}/;/k = yi/k Y/k — 0)(1 — 1’37'/]{) —|— T]H Z P(K/k’ = yi/k Y/k = ylk)P(Yi/k —= gi/k’)

i'=1 g, =0

The denominator (numerator) of Equation (5) is the product of only I, (I, — 1) terms. Therefore, this

formula makes finding w;, possible even for large group sizes.



WEB APPENDIX B
This appendix shows how to find w,, for scenarios 1) to 5) of the halving protocol. The derivation is

very similar to that of Dorfman’s protocol.

(i) Z, = 0:

This is the same as for Dorfman.
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where we let ¢ € kj denote those individuals within the /" subgroup (j = 1, 2) and we again use the

standard assumption that test outcomes are conditionally independent given the true outcomes

(Litvak et al. 1994).
Without loss of generality, we assume here and throughout this appendix that individual 7 is

within the first subgroup (¢ € k1). The numerator can be written as
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where Y,,k = {Y;k i =117 =1} is the vector of all true individual statuses excluding the 7"
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Using the same technique as above, we calculate the denominator to be
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The numerator can be expressed as
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We can show the numerator has the following form:
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V) Z,=1,2,=1,2,=1
We need to find
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WEB APPENDIX C

This appendix gives the derivation of the expression for 7, used with the array testing protocol. We

can write 7, as
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due to the independence among the I row responses and among the J column responses.
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for notational simplicity. Noting that Y, =1 is in the numerator of Equation (1) and if (¢, j) € @, we

3

find that Equation (2) becomes
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where (s,1) € @\ {(4,5)} means all indices in Q except for (4, j) and R, and C; are the true values for

R, and C,, respectively. When (4, j) € @, Equation (2) becomes
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Equations (3) and (4) help to show the contributions that the individual retests have on the
probabilities. Simply, for large sensitivities and specificities, the individual retests contribute values
close to 0 or 1.

Second, to find the denominator of Equation (1), note that
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Combining all the results, we have for (i, j) € @:
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Note that for the case of no individual retests, the formula for (4, 7) ¢ @ should be used for all 7 and 7.
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WEB APPENDIX D

A histogram of the true individual probabilities for one simulated data set in Section 3.1.
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WEB APPENDIX E
Average number of tests performed by each protocol for 500 simulated data sets, each containing 5000

individuals, with n = 6 = 0.99 in Section 3.2.

Group Size IG Dorfman Halving Array w/o retesting Array w/ retesting
4 1250 1522 1500 2502 2652
6 834 1214 1129 1669 1812
8 625 1111 968 1254 1398
10 500 1087 891 1000 1144
12 417 1107 857 837 993
14 358 1149 848 720 897
16 313 1196 844 633 831
18 278 1251 854 564 790
20 250 1321 875 510 771
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WEB APPENDIX F

This appendix discusses additional simulations used to reinforce the findings in Section 3 of the paper.
We simulate data for each testing protocol according to the model logit(p,) = 0, + Bz,
(logit(p;) = By + Bz, for the array testing protocols), where 3, = -6 and 3, = 4.7. The covariates are
generated from a Uniform(0, 1) distribution. These configurations provide an overall mean prevalence
of about 0.05. The sensitivity and specificity are set to be n = 6 = 0.99. The range of the group sizes
included in this study is reasonable given the prevalence level.

Figures 1-3 give the results for 1000 individuals and Figures 4-6 give the results for 5000
individuals. Overall, we see that the results from the paper continue to hold true here. Note that
of IG begins to increase with the group sizes in Figures 3 and 6, which it did not for the simulations
in the paper. This occurs due to the larger overall prevalence that leads to some of the larger group
sizes not being ideal for IG.

Note that Figure 7 provides a histogram of the true individual probabilities for one simulated data

set of 5000 individuals under the simulation settings.
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Figure 1. Estimated relative efficiencies calculated by Equation (4) in Section 3.2 based on 500
simulated data sets and 1000 individuals. Dorfman and halving are compared to IG. Array testing is

compared with and without retests.
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Figure 2. Averaged Var(8,) for 500 simulated data sets
line corresponds to Var(3) from individual testing. The

except we omit IG in order to reduce the y-axis scale.
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and 1000 individuals. The horizontal dashed

right-side plot is the same as on the left-side
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Figure 3. Average number of tests per unit of information calculated by Equation (5) in Section 3.3

based on 500 simulated data sets and 1000 individuals. Note that ¢ = 901 for individual testing.
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Figure 4. Estimated relative efficiencies calculated by Equation (4) in Section 3.2 based on 500

simulated data sets and 5000 individuals. Dorfman and halving are compared to IG. Array testing is

compared with and without retests.
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Figure 5. Averaged Var(ﬁl) for 500 simulated data sets and 5000 individuals. The horizontal dashed

line corresponds to Var(ﬁl) from individual testing. The right-side plot is the same as on the left-side

except we omit IG in order to reduce the y-axis scale.
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Figure 6. Average number of tests per unit of information calculated by Equation (5) in Section 3.3

based on 500 simulated data sets and 5000 individuals. Note that ¢ = 903 for individual testing.

o _
N
o _|
—
=
(2]
5
a S+
o
] [T T
| T T T |
0.00 0.05 0.10 0.15 0.20
P

Figure 7. A histogram of the true individual probabilities for one simulated data set of 5000

individuals.
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