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1 Linear Cantilever Physics 

In order to understand the physical principles underlying tapping mode AFM and 

EFM tip sample interaction, a suitable model of the cantilever must be developed. In 

this section a complete discussion of the physics of the cantilever, readapted from 

Yeskin et al. [1] and Sarid et al. [2], is presented. Starting from the cantilever physics, 

the parabolic expression, used to relate the phase shift    to the applied bias   in 

EFM-sweep and SPP-EFM, is derived. Here the cantilever is treated as a Linear 

Time-Invariant (LTI) system [3, 4].  

A cantilever is a beam in the form of a rectangular parallepiped having length  , 

thickness   (   ), width   (   ) and a tip with length      at its free end 

(Figure 1-1). The tip-surface interaction can be schematized as a point force   ap-

plied to the tip apex (   normal force,    longitudinal force,    transverse force) [1]. 

If the tip deflection vector   [     ] is linearly dependent on the applied force, 

then the Hooke's law holds:      [1, 5]. The matrix   is the inverse stiffness tensor 

and summarizes the cantilever’s elastic properties. The inverse stiffness tensor ele-

ments can be found by solving the cantilever static deformation problem under the 

influence of   [1]: 
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The       coefficient1 is the largest one and its inverse,        , characterizes 

the cantilever stiffness. Since   is symmetric it can be diagonalised and the previous 

equation can be decoupled into three equations, which can be treated separately [4]. 
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   where   is the Young’s modulus of the cantilever and    is the axial moment 

of inertia  of the beam section about the axis that passes through its centroid. 
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The AFM optical system does not detect tip deflections but the inclination2 of the 

cantilever’s top surface near its free end [1]. By equating cantilever strain energy (or 

potential energy) when the deformation is at its maximum to the kinetic energy, the 

equation of the undamped cantilever can be obtained and the fundamental natural 

frequency computed (see Rayleigh and Euler-Bernoulli solutions) [1, 6].   

 

Figure 1-1 – a) Cantilever basic geometry: L is the beam length, T the beam thickness, W the beam 
width, ltip the tip cone height. b) Angles β and α and qualitative stress analysis with Autodesk Inven-
tor®. In colour the qualitative deformation of the cantilever (Blue: min deformation. Red: max defor-
mation) c) Simplified description of an optical system detecting the inclination of the cantilever top 
surface.  

 

In the most generic case, a generic structural system can be described by the Mass 

Tensor  , the Stiffness Tensor      , and the Damping Tensor  , such that the 

response        satisfies the homogeneous equation of motion3 [6]          

    . However, since the major contribution (along  ) to the cantilever vibration 

comes from the term         , only the vibration with respect to the   axis 

(        ) is considered in the present study4: 

                                                  (0.2) 

                                                 

2 Two angles are actually measured: [
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3
 Derived from the Rayleight solution, including the damping tensor. The    are time derivates. 

4
 Here it is supposed that       are diagonal matrices so that the three equations along       can 

be decoupled. The    are time derivates. 

a) 

b) 

c) 
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The difference between the effective mass      (see Rayleigh solution5) and the real 

cantilever mass is that not all the cantilever oscillates with the same amplitude. The 

largest deflection takes place near the free end with a decay to zero at the clamped 

end. The Rayleigh theory of the vibrating cantilever shows approximately the same 

behaviour of the Euler-Bernoulli solution evaluated at the free end of the cantilever 

(   ), and gives approximately the same first oscillating frequency (natural fre-

quency,      ). If an excitation like      is added, it is necessary to replace the   in 

the RHS of equation (0.2) with     . Equation (0.2) can be written in the Laplace 

domain [7] as       [    ]         [    ]:  

     
                           (0.3) 

1.1 FORCED OSCILLATIONS IN THE PRESENCE OF FRICTION 

The behaviour of an oscillating cantilever can be described using the model of a 

spring-mass-damper pendulum, which is a point mass  , suspended from a motion-

less support by an ideal spring having stiffness (or elastic constant)  , in a viscous 

medium with damping constant  . A generic force       [    ] exciting the sys-

tem is introduced. If the system is left to evolve from non-zero initial conditions, 

and if the energy losses are not compensated, the oscillation damps and then stops 

within a finite time. Using the control theory technique of the analogous circuits 

[8], a circuit, analogous to the mechanical system, can be used to describe the fre-

quency response of the cantilever (Figure 1-2). The force         [    ] becomes 

a current generator, the spring becomes an inductor, the mass a capacitor, the 

damper a resistor. The circuit shown in Figure 1-2 is a current divider. The velocity 

of the mass          [     ] (voltage across the capacitor) is easily obtained. Us-

ing the rule of the current divider for finding the force (equivalent current) 

across  , and then multiplying all by the ‘equivalent impedance’      in order to 

get the velocity of   (equivalent voltage): 
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By differenciating the total energy dissipation           with respect to time, 
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The displacement      of the mass has to be found. Since the equilibrium position 

   does not change, integrating       in   (that is multiplying by    )  

      [    ]  
     

 
      

 

        
 (0.5) 

 

Figure 1-2 - Illustration of the spring-mass-damper pendulum (a), which represents the behaviour of 
the cantilever at its free end, and its relative mechanical circuit (b). Electric circuit analogous to the 
model of the spring-mass-damper pendulum (c). 

 

Equation (0.5) is the same equation as the pendulum equation,      
      

                   , where      has been indicated as  . The transfer function 

[3, 7] of the linear cantilever is a second order low pass filter [9]: 
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that can be written in the Bode format [3, 4]: 
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Comparing equation (0.6) with equation (0.7) it is possible to extract the following 

values for the natural frequency   , damping ratio  , quality factor  , and the two 

poles (i.e. the solution of                  ):  

   √    √      (0.8) 

a) b) 

𝑥 𝑡  mass position at t 

𝑧  mass position  

at equilibrium 
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In a normal Tapping Mode® SPM operation there are two main steps for the detec-

tion of       and its related quantities like the external force field: tuning of the 

cantilever driving frequency and surface scanning. During the tuning procedure, the 

cantilever is positioned far enough from the surface. The deflection of the cantile-

ver’s free end is detected by the photodetector, and a DSP allows the extraction of 

the      position. The cantilever oscillates thanks to the piezoelectric driving mech-

anism. A sweep of frequencies, in a reasonable range centred at the resonant fre-

quency indicated in the datasheet of the cantilever, is done in order to obtain a plot 

of the |     | and         . After the tuning procedure one frequency of oscilla-

tion   
6 is chosen. During the sample scanning, the cantilever is mechanically driv-

en at that frequency. Once the parameters are extracted, the tip is engaged at a cer-

tain distance to the surface of the sample to analyse. This distance should be small 

enough in order to allow the detection of the force field      . At this point, the tip 

oscillates because of the driving piezo mechanism and because of a force field      . 

The new detected | ̃     |  and     ̃      are extracted. By relating       ) 

and  ̃    ) useful information on    can be found.  

The next two sections cover a discussion on the frequency response of the can-

tilever when the cantilever is subject to an external sinusoidal driving force (cantile-

ver tuning) and when the cantilever is subject to the same external force plus a force 

field due to the tip-sample interaction (surface scanning). 

  

                                                 
6
    indicates a generic constant frequency.  
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1.2 CANTILEVER TUNING: FREQUENCY RESPONSE OF THE CANTILEVER  

In tapping mode the cantilever is mechanically driven at a frequency close to its res-

onant frequency. When the cantilever is far away from the sample the only force 

applied to the cantilever is a sinusoid. The system position is described by the trans-

fer function               : 

         
 

        
 (0.12) 

      [            ] (0.13) 

where   [ ]   [   ]   [      ] are constants. When the transitory period ends, the 

response of a stable system with respect to a sinusoidal input with constant fre-

quency    is a sinusoidal function of the same frequency    but amplified and de-

phased, with respect to the input, respectively of the quantities |      | and 

   [      ] [3]. If the system is forced with the sinusoid (0.13) with         the 

asymptotic7 response of the system is [3]:  

     [|        |   ]                [        ] 
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√     
  ]    (          √       ) 

(0.14) 

The frequency response [3, 4] of this simple model can be found by substituting 

     in the transfer function     . By Separating the real part from the imaginary 

part8, modulus and phase are: 

|     |  
 

√             
 (0.15) 

   [     ]        (
  

     
) (0.16) 
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 Of course the transitory response will have another form depending on the poles of the transfer 

function.  
8
  [     ]   
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The resonant frequency is the frequency at which |     | reaches the maximum 

value. By Calculating the derivative9 of |     |, equating to zero, and solving we 

find10: 

       √(  
 

   
) (0.17) 

|        |  
 

    

 

√     
 (0.18) 

The 3dB band of the system can be calculated by solving |     |     .  

1.3  SURFACE SCANNING: FREQUENCY RESPONSE OF THE CANTILEVER SUB-

JECT TO A FORCE FIELD 

When the cantilever is close to the sample surface, in addition to the driving sinus-

oidal force, an external force       acts on the system. Equation (0.12) and (0.13) be-

come: 

 
      

   
  

     

  
            (0.19) 

                           (0.20) 

The term          is a forcing input, depending on the output       i.e. only on spa-

tial coordinates. The force          results in a change of the position of the oscilla-

tor from the equilibrium position about which the oscillation occurs. For small os-

cillations the Taylor expansion of          around the equilibrium point    is [1, 10]:  

               
         

     
|
  

 ̃     ( ̃    ) (0.21) 

where  ̃           . This corresponds to a linear approximation of the force 

field. Substituting (0.21) into (0.20) and into (0.19): 
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(0.22) 

The equilibrium position    can be easily found imposing in equation (0.21) that 

there is a null frequency driving the cantilever (with     ), a null variation of 

     over the time, and a null variation of          over     :           . Since    is 

a constant, the time derivatives are  ̃        and  ̃         . Substituting and mov-

ing     and                |   ̃    in the LHS of equation (0.22) we obtain:  

 
   ̃
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  ̃ [  
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]                ( ̃    ) (0.23) 

A new stiffness coefficient can be defined [1]: 

 ̃    
      

  
|
  

 (0.24) 

so that  
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  ̃ ̃                ( ̃    )  (0.25) 

The  ( ̃    ) can be neglected if the          is smooth11 enough [1]. The forced re-

sponse is       ̃       12 with transfer function: 
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A perturbation in the   term perturbs also        and the position of the poles. 

The new natural frequency is13:  

 ̃    √  
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 (0.27) 

where  ̃ is the new damping ratio. The modulus and the phase of  ̃     are14: 
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The resonant frequency  ̃    and | ̃   ̃    | are:  
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Considering the previously listed formulae, as illustrated in (0.30), if 
      

  
|
  

   

then:  ̃        ; | ̃   ̃    |  |        | ;    [ ̃    ]     [     ] . If 

      

  
|
  

   then:  ̃         ; | ̃   ̃    |  |        |;    [ ̃    ]     [     ]. 

This is illustrated in Figure 1-3. 

 

Figure 1-3 - Effect of the sign of the first derivative of the field force on the frequency response with 
respect to the frequency response without field force. Cantilever parameters: K= 105 Pa m, 
M=48.74×10

-12
, Q=50, dfs(z)/dz=±50.  
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1.4 DETECTION OF THE EXTERNAL FORCE       

By relating      ) and  ̃    ) useful information on    can be found. There are 

several ways to extract information about   . Here only the phase shift is discussed 

because it is relevant in the EFM technique. The phase shift between       and 

 ̃      at the natural frequency    is (see (0.16) and (0.29))15: 
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Using 
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the phase shift can be written as: 
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Using the trigonometric relationship                  (
 

 
)  

 

 
, it follows that:  

          (
 

 
)  

 

 
 

 

 
        (

      

  
|
  

 

 
) (0.36) 

The force derivative can be written as: 
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Lei et al. [11] introduce further simplifications. If     (see (0.34)) is satisfied, using 

some trigonometric relationship we have16:                  (
 

 
)  

 

 
. Substitut-

ing in the (0.35) the same formula used by Lei et al. [11] is obtained:  

          (
      

  
|
  

 

 
) (0.38) 

The force derivative can be written as: 
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  ) (0.39) 

A further approximation can be done considering that, if    , the          can be 

expanded with the Taylor formula17: 
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The force derivative can be written as: 
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This formula is used for the EFM-sweep and SPP-EFM discussion in the paper. 
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 √      , which is valid if     . 
17

 see [12] for the formula. There are two Taylor expansions: one for     and onother for    . 
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2 SPP-EFM: extra information 

As discussed in the paper, in order to easily access the pins inside the Multimode 

AFM base, an extension of wires from the pins to outside the base ending with six 

connectors was made. A coaxial cable connected the pins to a 33220A 20Mhz Arbi-

trary Waveform Generator (Agilent, USA). A scheme of the setup is shown in  

Figure 2-1.  

 

 
Figure 2-1 - a) Jumpers inside the baseplate of the Nanoscope III. c) Baseplate and extension for an 
easy access to the pins (the cable is connected to ground and piezo cap). c) Channels that can be ac-
cessed through the pins. d) Example of sample preparation. e) Setup description and applied bias 
scheme. Three channels are recorded: height in tapping mode, EFM-phase in lift-mode (trace and 
retrace). A bias is applied only during the lift mode, using an Agilent waveform generator triggered 
by the Nanoscope III controller. The voltages applied during the trace and retrace in EFM mode 
were 5×[0.5, -1, -0.75, 0]  V and 5×[1, -0.5, 0.25, 0.75]  V, respectively. 

 

a) b) 

c) d) 

Piezo Tube 

Metal Disk 

Sample 

Conductive 

 Silver paint 

e) 
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The waveform period must be calculated according to the AFM scan rate, and ac-

cording to the fact that each segment must correspond to the appropriate line scan 

as discussed above18. Typical values are summarized in  

Figure 2-1. In most of the scans shown here a scan rate19 of 1 Hz was used. The wave-

form maximum amplitude was set to     , in order to have a perfectly parabolic re-

lationship  

The SPP-EFM deconvolution scheme has already been discussed in the paper. 

Each step involves a parabolic fitting with the MATLAB function fit [13].  The func-

tion fits data in the column vectors xdata, represented by the applied bias, and yda-

ta, represented by the measured EFM-phase signals. The fit function was assigned 

to a fit object ft_ with the function fittype in the form of ‘a*(x-b)^2’. Coefficient 

starting points and coefficient boundaries were also assigned to ft_.  The algorithm 

for the minimisation of the least squares objective function [13] was automatically 

selected by the fit function. The fit function returns three objects: 

[cfun,gof,output]. The first object, cfun, contains the optimized coefficients a 

and b that minimize the error function defined by the selected optimization algo-

rithm, and their     confidence bounds, which are used for the construction of the 

dotted graphs in Figure 4 of the paper. The second object, gof, contains goodness-

of-fit statistics. In our case, a good fit is defined as a model in which the model coef-

ficients can be estimated with little uncertainty [13]. The methods for judging the 

quality of the fit can be graphical or numerical. Plotting residuals and prediction 

bounds are graphical methods that help visual interpretation, while computing 

goodness-of-fit statistics and coefficient confidence bounds yield numerical 

measures that aid statistical reasoning [13]. The object gof contains the following 

goodness-of-fit statistics: the sum of squares due to error (SSE), r-square (  ), ad-

justed r-square, root mean squared error (RMSE) [13]. The SSE measures the total 

deviation of the response values from the fit to the response values:     

∑      ̃  
 
   

 
, where    are the ydata elements, and  ̃  are the values of the fitting 

                                                 
18

 The waveform must be triggered first, then the tip can be engaged in lift mode. The scan will start 
from the middle of the image and it will be possible to start to save the image only when the tip will 
reach the 512 line scan.  
19

 When the 4 segments waveform is used scan rates of               would correspond to waveform 
periods of                   respectively. The waveform was synchronised with the scan lines using a 
start phase of     . 
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function in correspondence of the xdata elements [13]. A value closer to   indicates 

that the model has a smaller random error component [13]. The    measures how 

successful the fit is in explaining the variation of the data [13]. Put another way,    is 

the square of the correlation between the response values and the predicted re-

sponse values [13]. It is also called the square of the multiple correlation coefficient 

and the coefficient of multiple determination.    is defined as [13]: 

   
∑   ̃   ̅   

   

∑      ̅  
   

    
   

∑      ̅   
   

 (0.42) 

where  ̅ is the mean of the observed data.    can take on any value between   and 

 , with a value closer to   indicating that a greater proportion of variance is ac-

counted for by the model [13]. For example, an    value of      means that the fit 

explains     of the total variation in the data about the average [13]. In the present 

work the    was selected as a synthetic statistical parameter for the evaluation of 

the goodness-of-fit of the deconvolution procedure [13]. It is worth observing that 

the     confidence bounds,    and    are also used for the generation of extra 

channels defined as the relative errors         and        . Finally, the third 

object, output, contains information associated with the fitting algorithm. In this 

case, the selected algorithm for the minimization of the objective function was the 

Trust-Region Reflective Newton [13].   
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