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decision-making - Materials S1

1 Ideal Observer Derivation

In this section, the derivation of a likelihood-ratio hypothesis test for determining
which of two normally distributed populations has the greatest mean is presented.
The basis for this test stems from the work of Flehinger et al.[1, 2] who proposed a
likelihood ratio hypothesis test for comparing treatments in medical trials in which the
data from the two treatments is represented by two normally distributed populations
with common variance σ2. Subsequent contributions made to this body of work[3,
4, 5] provided generalisations to the likelihood ratio test, as well as bounds on the
performance achieved in a variety of scenarios. One such generalisation, particularly
relevant to the comparative two-alternative decision making problem outlined in the
main text, was made by Hayre and Gittins[4] who generalised the hypothesis test,
allowing the alternatives, X and Y , which are under comparison to have unequal
variances denoted σ2

x and σ2
y respectively. With no assumption of common variance

made in the formulation of the comparative decision problem, the likelihood ratio test
derived herein is based upon the subsequent work of Hayre and Gittins[4].

As stated in the main text the decision maker is presented with two sources of stimuli,
the neural response to which (the firing rate) is represented by two normally distributed
populations X and Y from which two sequences of observations, xm = {x1, . . . xm} and
yn = {y1, . . . , yn} (the firing rates), are drawn. Where, each xi and yj is independent
and normally distributed such that xi ∼ N (µx, σ

2
x) and yj ∼ N (µy, σ

2
y). Stated simply,

the goal of the decision maker is to determine which of the two populations has the
larger mean value (µHigh). With two alternatives there are two possible states of
nature (assuming µx 6= µy), either µx > µy or µy > µx which can be described by two
hypotheses Hx and Hy, shown below:

Hx : µx = θ + δ µy = θ − δ
Hy : µx = θ − δ µy = θ + δ

Where, θ is the average of the means of the two normally distributed variables, an
unknown quantity, and 2δ is the difference in the means of the two variables, which is
assumed to be known.
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With the decision problem formulated as a choice between two simple hypotheses, Hx

and Hy, on the basis of a fixed total number of observations, the Likelihood Ratio Test
δLLR(xm,yn), can be formulated as follows[8]:

δLLR(xm,yn) =

{
Hx if Λ(xm,yn) > eη

Hy if Λ(xm,yn) ≤ eη
}

(1.1)

Where, eη is the decision boundary and Λ(xm,yn), shown below, is the ratio of the
likelihood of the observations xm and yn under the two hypotheses, Hx and Hy and
eη is the selected decision threshold.

Λ(xm,yn) =

∏m
i=1 P (xi | Hx)

∏n
j=1 P (yj | Hx)∏m

i=1 P (xi | Hy)
∏n
j=1 P (yj | Hy)

= exp

(
2δ

(∑
xi −mθ
σ2
x

−
∑
yj − nθ
σ2
y

))
Since the likelihood ratio stated above depends on the unknown parameter θ it is
necessary to calculate a marginalised likelihood ratio which is independent of this
parameter. To achieve this without making any additional assumptions it is necessary
to introduce two new sets of variables um = {u2, . . . um} and vn = {v1, . . . vn}, which
are related to the xi and yj variables as shown below:

ui = xi − x1, i = 2, . . . ,m vj = yj − x1, j = 1, . . . , n

Although the variables x1, ui and vj are all functions of a linear combination of nor-
mally distributed random variables they are all dependent on the value x1 and as such
are no longer independent of one another. Thus, collectively the probability distrubu-
tion over the variables is given by the multivariate normal distribution[7]:

P (x1,um,vn | Hi) =
1

(2π)
k
2 | Σ | 12

exp

(
−1

2
(x− µHi)

T
Σ−1 (x− µHi)

)
(1.2)

Where, x is a vector containing the variables x1, u2 . . . um and v1 . . . vn, µHi is a vector
containing the means of the variables in x under hypothesis Hi and Σ is the covariance
matrix of the variables, as shown in Equations 1.3 and 1.4 respectively.

x =



x1,
u2,
...

um,
v1,
...
vn


µHi =



µx|Hi ,
µu|Hi ,

...
µu|Hi ,
µv|Hi ,

...
µv|Hi


(1.3)

Where µx|Hi , µu|Hi and µv|Hi are the mean values of the variables x, u and v under
hypothesis Hi and the elements of the covariance matrix Σ are listed below and shown
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in matrix form in Equation 1.4 below.

Cov (x1, x1) = σ2
x

Cov (ui, ui) = 2σ2
x

Cov (vi, vi) = σ2
x + σ2

y

Cov (x1, ui) = Cov (ui, x1) = −σ2
x

Cov (x1, vi) = Cov (vi, x1) = −σ2
x

Cov (ui, uj) = Cov (uj , ui) = σ2
x ∀i 6= j

Cov (vi, vj) = Cov (vj , vi) = σ2
x ∀i 6= j

Cov (ui, vj) = Cov (vj , ui) = σ2
x ∀i 6= 0

Populating the covariance matrix Σ with these terms yields:

Σ =



σ2
x −σ2

x . . . . . . . . . . . . −σ2
x

−σ2
x 2σ2

x
...

. . .
... 2σ2

x
... σ2

x + σ2
y

...
. . .

−σ2
x σ2

x + σ2
y


(1.4)

To calculate the inverse of the covariance matrix (Equation 1.5) it is necessary to
perform a decomposition operation first, which yields two triangular matrices, a lower
triangular matrix L and an upper triangular matrix U , the product of which yields the
original covariance matrix Σ = LU [9].

L =



1 0 . . . . . . . . . . . . 0

−1
. . .

0...
. . .

...
. . .

...

0
...

...
. . .

−1 1


U =



σ2
x −σ2

x . . . . . . . . . . . . −σ2
x

0 σ2
x 0...

. . .
... σ2

x
...

0
σ2
y

...
. . .

0 σ2
y


Where, the large off-diagonal zeros indicate that all remaining elements in the matrices
L and U for which a value has not been specified all have value 0.

With the covariance matrix decomposed, the inverse of the matrix can be calculted in
two stages. In the first step the inverse of L is calculated. Following this, the inverse
of Σ is given by finding the matrix Σ−1 which satisfies UΣ−1 = L−1[9].
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Starting with the lower triangular matrix L, it can be seen that the matrix is an
atomic-triangular matrix, a special form of triangular matrix in which all off-diagonal
elements are zero with the exception of a single column which contains non-zero values.
The inverse of such a matrix is found by simply replacing the non-zero off-diagonal
elements with their additive inverse. Substituting the result into UΣ−1 = L−1 yields
the following result:



σ2
x −σ2

x . . . . . . . . . . . . −σ2
x

0 σ2
x 0...

. . .
... σ2

x
...

0
σ2
y

...
. . .

0 σ2
y


Σ−1 =



1 0 . . . . . . . . . . . . 0

1
. . .

0...
. . .

...
. . .

...

0
...

...
. . .

1 1



With the exception of the first row of the matrix U , all the remaining rows contain
only a single non-zero element. As such, calculation of the inverse of matrix Σ−1 can
be performed with relative ease through a process of backwards substitution yielding:

Σ−1 =



mσ2
y+nσ

2
x

σ2
xσ

2
y

1
σ2
x

. . . 1
σ2
x

1
σ2
y

. . . 1
σ2
y

1
σ2
x

1
σ2
x

...
. . .

1
σ2
x

1
σ2
x

1
σ2
y

1
σ2
y

...
. . .

1
σ2
y

1
σ2
y


(1.5)

Substituting these terms into the exponent of the multivariate normal distribution
(Equation 1.2) the following result is obtained:

(x− µHi)
T

Σ−1 (x− µHi) =

(
nσ2

x +mσ2
y

)
(x1 − µx)

2

σ2
xσ

2
y

+
2 (x1 − µx)

∑m
2 (ui − µu) +

∑m
2 (ui − µu)

2

σ2
x

+
2 (x1 − µx)

∑n
1 (vj − µv) +

∑n
1 (vj − µv)2

σ2
y

Next, setting µu = 0, as this is true regardless of hypothesis, and rearranging to collect
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terms of x1 the following is obtained:

(x− µ)
T

Σ−1 (x− µ) =
2µx

∑m
2 ui +

∑m
2 u2i

σ2
x

+

∑n
1 v

2
j − 2µv

∑n
1 vj + nµ2

v − 2µx (
∑n

1 vj − nµv)
σ2
y

+
µ2
x

(
nσ2

x +mσ2
y

)
σ2
xσ

2
y

+
x21
(
nσ2

x +mσ2
y

)
σ2
xσ

2
y

+ x1

(
2
∑m

2 ui
σ2
x

+
2 (
∑n

1 vj − nµv)
σ2
y

−
2µx

(
nσ2

x +mσ2
y

)
σ2
xσ

2
y

)

Following this, using the definite integral
∫∞
−∞ e−ax

2
1e−2bx1ecdx1 =

√
π
a e

b2

a +c, the pa-
rameter x1 can be integrated out of the likelihood function, yielding a marginal likeli-
hood of efHi , the exponent of which is shown below:

fHi =
(
∑n

1 vj)
2
σ4
x + 2

∑n
1 vj (

∑m
2 ui +mµv)σ

2
xσ

2
y −

∑n
1 v

2
j

(
nσ4

x +mσ2
xσ

2
y

)
2σ2

xσ
2
y

(
nσ2

x +mσ2
y

)
+
−σ2

y

(
2n
∑m

2 uiµvσ
2
x +mnµ2

vσ
2
x − (

∑m
2 ui)

2
σ2
y +

∑m
2 u2i

(
nσ2

x +mσ2
y

))
2σ2

xσ
2
y

(
nσ2

x +mσ2
y

)
Where, µv = µx−µy is equal to 2δ when hypothesis Hx is the true state of nature, and
−2δ when hypothesis Hy is the true state of nature. Thus, with µv = ±2δ depending on
the hypothesis, the majority of terms in fHi cancel when calculating the log-likelihood
ratio ln Λ(xm,yn) = fHx − fHy .

ln Λ(xm,yn) = fHx − fHy

=
4δn

∑m
2 ui − 4δm

∑n
1 vj

nσ2
x +mσ2

y

Returning to the original variables xi and yj , the log-likelihood ratio can be rewritten
in the form used in the main text:

ln Λ(xm,yn) =
4δn

∑m
2 [xi − x1]− 4δm

∑n
1 [yj − x1]

nσ2
x +mσ2

y

=
4δn

∑m
2 xi − 4δm

∑n
1 yj − 4δn(m− 1)x1 + 4δmnx1
nσ2

x +mσ2
y

=
4δn

nσ2
x +mσ2

y

m∑
1

xi −
4δm

nσ2
x +mσ2

y

n∑
1

yj (1.6)

Finally, the decision function δ(xm,yn) from Equation 1.1 can be rewritten in terms
of the log-likelihood function, LLR(xm,yn), as shown below:

δ(xm,yn) =

{
Hx if LLR(xm,yn) > η
Hy if LLR(xm,yn) ≤ η

}
(1.7)
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Where the decision boundary η controls for the level of bias inherent in the decision
rule. With the log-likelihood ratio, a decision boundary of η = 0.0 corresponds to an
unbiased decision rule, in which the decision maker accepts the hypothesis under which
the observations were most likely to have occurred. With no prior knowledge of the
likelihood of the two hypotheses Hx and Hy, a decision boundary of η = 0 shall be
used for the ideal observer.

2 Ideal Observer - Error Rates and Optimal Sam-
pling Allocation

In the previous section a decision function was presented for selecting which of two
normally distributed populations has the greatest mean. This decision function, a
log-likelihood ratio test, provides the optimal solution to the decision problem for any
given decision boundary and set of observations[8].

In this section the effect the sampling strategy, q, has on the expected error rate of
the ideal observer is considered. To begin, in section 2.1, the expected error rate of
the ideal observer decision maker is derived as a function of the decision parameters
and the sampling strategy q. Next, in section 2.2, this expected error rate is used to
determine the sampling strategy which minimises the error rate.

2.1 Expected Error Rate

As outlined in Section 1, the ideal observer utilises the Log-Likelihood Ratio Test (Log-
LRT) δLLR(xm,yn) to determine which of the two available hypotheses Hx or Hy to
accept.

δLLR(xm,yn) =

{
Hx if LLR(xm,yn) > 0
Hy if LLR(xm,yn) ≤ 0

}
Where, LLR(xm,yn) is the Log-Likelihood Ratio (LLR), the value of which can be
calculated from the observations xm and yn as follows:

LLR(xm,yn) = log Λ(xm,yn)

=

(
4δ

qσ2
y + (1− q)σ2

x

)(
(1− q)

∑
xi − q

∑
yj

)
(2.1)

Thus, at a given interrogation time T , the probability of making an error is given
by the integral over the distribution of LLR between −∞ and 0 if Hx is the correct
hypothesis and between 0 and ∞ if Hy is the correct hypothesis. This is shown below
in Equation 2.2, where ERHx and ERHy are used as short hand to denote the error
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rates under each of the hypotheses for a given parameterisation of the problem:

ERLLR|Hx = P (LLR ≤ 0 | Hx) ERLLR|Hy = P (LLR > 0 | Hy) (2.2)

With LLR(xm,yn) given by a linear combination of the observations from the normally
distributed random variables X and Y , the LLR is itself a normally distributed random
variable. Where the mean of LLR, denoted E(LLR), can be calculated using the
following expression:

E(LLR) =

(
4δq(1− q)T

qσ2
y + (1− q)σ2

x

)
(µx − µy) (2.3)

Where, (µx − µy) is equal to 2δ when hypothesis Hx is the true state of nature, and −2δ
when hypothesis Hy is the true state of nature; thus, E(LLR | Hx) = −E(LLR | Hy).

Similarly, the variance of LLR, denoted Var(LLR), can be calculated using the following
expression:

Var(LLR) =

(
4δq(1− q)T

qσ2
y + (1− q)σ2

x

)2

Var (x̄T − ȳT )

=

(
4δq(1− q)T

qσ2
y + (1− q)σ2

x

)2
(
σ2
x

qT
+

σ2
y

(1− q)T

)
(2.4)

=
16δ2q(1− q)T
qσ2
y + (1− q)σ2

x

(2.5)

With the expressions for the mean and variance of the Log-LLR at the decision time
T , the decision functions error rates (Equation 2.3) can be stated in terms standard
normal Cumulative Distrubution Function (CDF), as shown below:

ERLLR|Hx = P (LLR ≤ 0 | Hx) ERLLR|Hy = P (LLR > 0 | Hy)

= Φ

(
−E(LLR|Hx)√

Var(LLR)

)
= 1− Φ

(
−E(LLR|Hy)√

Var(LLR)

)
(2.6)

Where, the argument of the normal CDF function, −E(LLR|Hi)√
Var(LLR)

, is shown below.

−E(LLR | Hi)√
Var(LLR)

= −

√
q(1− q)T

(1− q)σ2
x + qσ2

y

(µi − µj 6=i) (2.7)

2.2 Optimal Allocation of Samples

Now, with the expected error rate of the ideal observer derived, the relationship be-
tween this error rate and the chosen sampling strategy q can be considered.
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To achieve this, it is first noted that Φ (.) is a monotonically increasing function of
its argument and, as such, the minima and maxima of the function coincides with the
minimum and maximum extremum of the argument, respectively. Considering the two
error rates, ERHx and ERHy individually, it can be seen that ERHx is minimised when
−E(LLR|Hx)√

Var(LLR)
is minimised and ERHx is minimised when

−E(LLR|Hy)√
Var(LLR)

is maximised.

However, since −E(LLR|Hx)√
Var(LLR)

=
E(LLR|Hy)√
Var(LLR)

, the minimum of −E(LLR|Hx)√
Var(LLR)

and the max-

imum of
E(LLR|Hy)√
Var(LLR)

coincide. Thus, any sampling strategy that minimises the error

rate under one hypothesis also minimises the error rate under the other hypothesis.

Taking the derivative of −E(LLR|Hx)√
Var(LLR)

, the result of which is shown below, the optimal

sampling strategy q∗ can be found as follows: If stationary points in the interval [0, 1]
are found and one or more of them is a minimum extremum then by comparing the
error rate at each point the optimal strategy q∗ can be found. However, if no minimum
extremum exists in the range [0, 1], then the optimal strategy shall lie at either q∗ = 0
or q∗ = 1, with further analysis required.

d

dq

−E(LLR)√
Var(LLR)

= −
(1− q)qT 2δ

(
(1− q)2σ2

x − q2σ2
y

)(
q(1− q)2Tσ2

x + q2(1− q)Tσ2
y

)3/2 (2.8)

Now, before solving for stationary points where d
dq
−E(LLR)√
Var(LLR)

= 0 it is first noted that

at certain points (q = 0 and q = 1) in the interval [0, 1] the derivative is undefined and
a vertical tangent exists.

With that noted the derivative can be simplified by the multiplying out the denomi-
nator of the two terms on the Right-Hand Side (RHS) of Equation 2.8:

0 = −(1− q)qT 2δ
(
(1− q)2σ2

x − q2σ2
y

)
(2.9)

From the equation above it appears the DV has critical points at the following q values:
q = 0, q = 1, q = σx

σx+σy
and q = σx

σx−σy . To determine which, if any, of the points

correspond to valid sampling strategies and a minimum extremum of the DV requires
further analysis. Starting with the points q = 0 and q = 1 mentioned earlier, it can
be seen by substituting these values back into Equation 2.8 that these points are not
in fact stationary points but correspond to vertical tangents where the derivative is

undefined with d
dq
−E(LLR)√
Var(LLR)

=∞.

Next, from inspection of the point q = σx
σx−σy it can be seen that the point lies outside

of the interval of valid sampling strategies [0, 1], leaving only the point q = σx
σx+σy

,

which does correspond to a valid sampling strategy for any σx and σy.

To check if the point q = σx
σx+σy

is a maxima, minima or a point of inflection requires the

evaluation of the second derivative at q = σx
σx+σy

, with d2

dq2
−E(LLR)√
Var(LLR)

> 0 indicating
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a minima, d2

dq2
−E(LLR)√
Var(LLR)

< 0 indicating a maxima and d2

dq2
−E(LLR)√
Var(LLR)

= 0 requiring

further analysis. Calculating the second derivative of −E(LLR)√
Var(LLR)

the following result is

obtained:

d2

dq2
−E(LLR)√
Var(LLR)

= −
(−1 + q)qT 3δ

(
(−1 + q)4σ4

x − 2q
(
−2 + 3q − 2q2 + q3

)
σ2
xσ

2
y + q4σ4

y

)
2
(
(−1 + q)qT

(
(−1 + q)σ2

x − qσ2
y

))5/2
Substituting q = σx

σx+σy
into this result and simplying yields the following result:

d2

dq2
−E(LLR)√
Var(LLR)

| q =
σx

σx + σy
=

2Tδ√
Tσ2

xσ
2
y

(σx+σy)2

(2.10)

Inspection of this result reveals that the second derivative of −E(LLR)√
Var(LLR)

at the point

q = σx
σx+σy

is always positive. Thus, the point q = σx
σx+σy

corresponds to a minimum

extremum and the optimal sampling strategy under either hypothesis is q∗ = σx
σx+σy

.

3 Ideal Observer Model - Switching Costs

In Section 2, when the solution to the decision problem as seen by the ideal observer
was derived, it was assumed that the full decision time T was spent observing one or
other of the two available sources of stimuli. A consequence of this assumption is that
the decision maker must have the ability to instantaneously switch sampling between
the two sources of stimuli.

In decisions involving visual stimuli, eye movements form an essential part of how
sensory and cognitive attention is controlled during information gathering. For the
participants tackling the visual discrimination task outlined in the main text, com-
pletion of these eye movements is clearly not instantaneous. Moreover, peri-saccadic
suppression is likely to prolong the period in which vision is attenuated beyond the
duration of the movement itself[10]. To understand the effect these non-instantaneous
switches in fixation have on the behaviour of the decision maker a switching cost, in
the form of a loss of sampling time, is introduced into the ideal observer model. This
section investigates the effect the switching cost has on the expected behaviour and
performance of the ideal observer decision maker.

If we begin by denoting the loss in sampling time by Tc and the number of switches
by ns then we can reformulate the log likelihood equation, LLRT , as shown below.

LLRT =

(
4δ(q − q2)(T − nsTc)
qσ2
y + (1− q)σ2

x

)
(x̄T − ȳT ) (3.1)
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Where, q represents the portion of the utilised sampling time T −nsTc spent drawning
observations from alternative X with the total number of discrete samples drawn by
the ideal observer from alternative X given by m = q(T − nsTc) and the total number
of samples drawn from alternative Y is given by n = (1− q)(T − nsTc).

As before (Equation 2.6), the expected error rate for the modified ideal observer can
be calculated from the standard normal’s CDF, as shown below.

ERLLR|Hx = P (LLR ≤ 0 | Hx) ERLLR|Hy = P (LLR > 0 | Hy)

= Φ

(
−E(LLR|Hx)√

Var(LLR)

)
= 1− Φ

(
−E(LLR|Hy)√

Var(LLR)

)
(3.2)

Where the argument of the Φ(.) is given as follows:

η − E(LLR | Hi)√
Var(LLR)

= − q(1− q)(T − nsTc) (µx − µy)√(
q(1− q)2(T − nsTc)σ2

x + q2(1− q)(T − nsTc)σ2
y

) (3.3)

As noted previously in Section 2.2, the expected error rate is minimised under Hx when
the argument of Φ(.) has minimum value and is minimised underHy when the argument
of Φ(.) has maximum value. Inspection of Equation 3.3 shows that increasing the value
of ns leads to a increase in the expected error rate achieved under both hypothesis Hx

and Hy. Next, we note an additional property of introducing switching costs, which is
that for values of ns = 0 the sampling proportion q must be equal to either 0 or 1, as
a switch must occur in order for samples to be drawn from both of the alternatives.

Thus, from Equations 3.2 and 3.3, we can see that at ns = 0 η−E(LLR|Hi)√
Var(LLR)

= 0 and

an expected error rate of 50% is achieved. Further inspection shows that whenever
T > Tc, setting ns = 1 and having a 0 < q < 1 leads to a reduction in error rate
compared to that achieved when ns = 0.

Next, to determine the optimal sampling strategy to be used for a given problem
parameterisation, we note that the introduction of a switching penalty has merely
resulted in a reduction the amount of effective sampling time available. Since the
optimal sampling strategy, q = σx

σx+σy
, derived in the previous section is independent

of sampling time and depends only on the values of σx and σy we can conclude that
the introduction of a switching penalty has no effect on how the available sampling
time should be apportioned between the variables.

From which we can conclude that, in the situation when values of σx and σy are
known and the switching cost satisfies the inequality Tc < T , the expected error rate
is minimised by selecting ns = 1 and q = σx

σx+σy
.

Relating this optimal one-switch strategy back to the number of samples, m and n,
drawn from each of the two variables X and Y we find that m = q(T − Tc), n =
(1− q)(T − Tc) and T = m+ n+ Tc.
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4 Ideal Observer - Unknown Variance

In the previous section it was noted that the ideal observer model made an implicit
assumption that the decision maker is capable of instantaneously switching fixation
between the two available sources of stimuli. As noted, this assumption is unrealistic
for the human participants solving visual discrimination tasks. Thus, a switching cost,
in the form of a loss of useable sampling time for each switch effected, was incorporated
into the ideal observer model.

In this section another assumption made about the decision makers is considered,
namely that of known stimuli noise. Recall that the optimal strategy q = σx

σx+σy
de-

pends on relative noise levels of the stimuli. From a theoretical standpoint, optimal
solutions do not exist for decisions requiring inferences about the means of two normal
populations when the variances of each population are not necessarily equal and the
variances themselves (or their ratio) are unknown[6]. Therefore, in order to simplify
the problem we consider an ideal case in which there are two variances σ2

low and σ2
high

(as in the visual discrimination task described in the main text) and the decision mak-
ing agent is an ideal observer, which after a brief sampling period, is able to classify
the information source as low or high noise. Furthermore, it is assumed that the two
variances are equally likely for each of the alternatives such that the 4 possible com-
binations with which the variances of the two sources can be drawn from {σ2

low, σ
2
high}

are all equally likely.

Under such a formulation, the challenge of the agent then becomes how to apportion
the available sampling time between the two alternatives, given that the variance of
the second alternative will be unknown at the time the switch is made. In order to
further simplify the task we shall begin by assuming that the agent makes only a single
switch between the two alternatives; later, in Section 4.2, we will consider under what
conditions the agent’s performance would be best served by making multiple switches.

4.1 Single Switch

Given this formulisation of the unknown variance case and assuming, without loss of
generality that X is initially fixated upon such that σx is known σy unknown, the
expected error rate of the decision maker can be written as follows:

ER(q, T ) = PY (σ2
low)ER(σ2

x, σ
2
y = σ2

low, q, T, δ)

+ PY (σ2
high)ER(σ2

x, σ
2
y = σ2

high, q, T, δ) (4.1)

Where, PY (σ2
low) and PY (σ2

high) are the prior probabilities that σ2
y = σ2

low and σ2
y =

σ2
high respectively.

With the expected error rate dependent on the value of σx, there are two distinct error
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rates, which shall be denoted ER(q, T )|σx=σlow
and ER(q, T )|σx=σhigh

. Considering the
case σ2

x = σ2
low first, the value of q which yields the smallest expected error rate can be

found by taking the derivative of Equation 4.1, shown below, and solving for stationary
points.

∂

∂q
ER(q, T )|σx=σ2

low
=
e

2(q−1)qTδ2

σ2
low (2q − 1)

√
− (q−1)qTδ2

σ2
low

2
√

2π(q − 1)q

+
e
− 2(q−1)qTδ2

(q−1)σ2
low

−qσ2
high Tδ2

(
(q − 1)2σ2

low − q2σ2
high

)
2
√

2π

√
(q−1)qTδ2

(q−1)σ2
low−qσ

2
high

(
(q − 1)σ2

low − qσ2
high

)2
Unfortunately, it is not possible to determine analytically the values of q which corre-
spond to the stationary points of the function. However, although we cannot determine
the exact value of q which corresponds to the minimum extremum of the error function
we can be sure that it’s value lies between the optimal value for the cases σy = σlow
and σy = σhigh, as shown below.

σlow
σlow + σhigh

< q∗ <
σlow

σlow + σlow
(4.2)

This inequality follows from the analysis of the ideal observers error rate in Section 2,
where it was shown that the error rate for the known variance case has a single turning
point within the acceptable range of sampling strategies (0 ≤ q ≤ 1). With that point
(q = σx

σx+σy
) corresponding to a minimum of the error rate, deviations in sampling

strategy from q = σx
σx+σy

within the range 0 ≤ q ≤ 1 result in an increase in error rate

with larger deviations yielding a larger increases in error rate.

Thus, as q approaches the lower bound of the inequality from below (q < σlow

σlow+σhigh
),

the argument of the normal CDF function (−E(LLR|Hi)√
Var(LLR)

) and thus the error rate for

both σ2
y = σ2

low and σ2
y = σ2

high, will be decreasing. Conversely, as q moves past the

upper bound (q > σlow

σlow+σlow
) the argument and error rate for both σ2

y = σ2
low and

σ2
y = σ2

high, will be increasing. As the value of q is varied from the lower bound to

the upper bound the argument and error rate for increase for σ2
y = σ2

low and decrease
for σ2

y = σ2
low. Thus, since the expected error rate for the unknown variance case is

a weighted average of the error rates for the two known variance cases, there exists a
point between these two bounds at which the expected overall error rate is minimised.

Similarly to the above, when σ2
x = σhigh the region containing the optimal strategy q∗

is bounded as follows:

σhigh
σhigh + σhigh

< q∗ <
σhigh

σhigh + σlow
(4.3)
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In Figure 4.1(b) the two regions containing the optimal sampling strategy for the
conditions of σ2

x = σlow and σ2
x = σhigh are illustrated along with the optimal strategies

for the four known variances cases (Figure 4.1(a)) for comparison.

0 Tσy=σlowσx=σlow

σx=σlow
σy=σhigh

0 T

0 Tσy=σlowσx=σhigh

0 Tσy=σhighσx=σhigh

(a) σx = σlow, σy = σlow

σx=σlow

σx=σhigh

σy=σlow
0 Tσy=σhigh

σy=σlow
0 Tσy=σhigh

(b) σx = σHigh, σy = σlow

Figure 4.1: Division of sampling time for varying combinations of high and low noise
stimuli for instantaneous switching decision problems. In Panel (a) the timelines show
the division of sampling time between the sources of stimuli for the four possible
combinations of high and low noise stimuli with the noise of both sources known a
priori. In each timeline we show the simplest single switch strategy, the timing of the
switch is indicated by the vertical line, with alternative X observed from time 0 to the
switching point and alternative Y observed thereafter until the trial ends at time T .
In Panel (b) the timelines show the range of times in which the optimal first switching
point lies when the noise level of stimulus Y is unknown. Unlike the known variance
case, the exact location of the optimal first switching point depends on not only the
two possible noise levels but also depends on the total sampling time available and 2δ,
the difference in the response to the stimuli.

From inspection of Figure 4.1 and the bounds given in Equations 4.2 and 4.3 it can be
seen that the regions of the sampling space containing the optimal sampling strategy
under the two conditions σ2

x = σlow and σ2
x = σhigh do not overlap. Thus, for σlow 6=

σhigh, the optimal sampling strategy cannot be determined until X has been sampled
and the value of σx is known.

4.2 Multiple Switches

In the previous section the effect unknown variances has on the optimal sampling
strategy when the decision maker is restricted to making only a single switch between
the sources of stimuli was investigated. Under such conditions it was shown that, whilst
the optimal strategy itself cannot be found analytically, it does lie between the bounds
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outlined below:

σlow
σlow + σhigh

≤ q∗ ≤ σlow
σlow + σlow

if σx = σlow

σhigh
σhigh + σhigh

≤ q∗ ≤ σhigh
σhigh + σlow

if σx = σhigh (4.4)

In this section we consider under what conditions the decision maker should choose to
make additional switches in fixation given that the chosen switching time lies between
the bounds identified above. In addition, the influence the switching cost has on the
switching frequency is considered.

Assuming that the initial switch has already been effected and the variance of both
alternatives are known to the decision maker, a second switch will be beneficial if the
expected error rate with the second switch is less than without. Denoting the useable
sampling time and sampling strategy by T1 and q1 for the single switch case and by T2
and q2 for the two switch strategy this can be written as follows:

ER(σ2
x, σ

2
y, q2, T2, δ) < ER(σ2

x, σ
2
y, q1, T1, δ) (4.5)

In addition to the previous assumptions that have been stated it can also be assumed
that T2 ≤ T1 with equality between the sampling times when there is no switching cost
(Tc = 0). Furthermore, since switching back to alternative X can only increase the
number of samples drawn from X, it holds that q2T2 > q1T1 (number of samples from
X given by m = qT ) thus, since T2 ≤ T1, q2 must be strictly larger than q1.

Now, by considering the four possible combinations of variance individually, Equa-
tion 4.5, and the benefit of an additional switch, can be evaluated. Starting with
σx = σlow and σy = σhigh we know, from Section 3, that the optimal sampling strategy
q∗ = σlow

σlow+σhigh
. As noted in the previous section, deviations in sampling strategy from

q∗ = σx
σx+σy

within the range 0 ≤ q ≤ 1 result in an increase in error rate with a larger

deviations yielding a larger error rate increase. Thus, since it has been assumed that
the switching time q1 lies within the bounds in Equation 4.4 and since q1 < q2, even
if Tc = 0, additional switches can only serve to increase the error rate. Likewise, with
σx = σhigh and σy = σhigh the optimal sampling strategy again corresponds to the
lower bound with q∗ = σlow

σlow+σhigh
and additional switches can only serve to increase

the error rate.

Conversely, when presented with the combinations of noise of σx = σlow and σy = σlow
or σx = σhigh and σy = σlow if the first switch strategy lies below the upper bound
outlined in Equation 4.4 then an additional switch (increase portion of time allocated
to alternative X) could serve to improve the performance of the decision maker. De-
termining exactly when a second switch is beneficial requires further analysis of the
inequality in Equation 4.5. Before considering two remaining variance combinations
individually it is first noted that, since the error rates, under both Hx and Hy, are

monotonically increasing functions of −E(LLR|Hi)√
Var(LLR)

, an equivalent inequality for deter-



15

mining the efficiacy of an additional switch is given as follows:

− 2(1− q2)q2T2(µx − µy)√
(1− q2)2q2T2σ2

x + (1− q2)q22T2σ
2
y

< − 2(1− q1)q1T1(µx − µy)√
(1− q1)2q1T1σ2

x + (1− q1)q21T1σ
2
y

(4.6)

Assuming that it is beneficial to the decision maker to make a second switch then, from
Section 2, it is clear that the decision maker will minimise their error rate with total
sampling time T2 by allocating samples such that q2 = σx

σx+σy
. Given this assumption

and the simplified inequality above, the conditions under which an additional switch
is beneficial can be considered for the two remaining combinations of variance.

Starting with the case when σx = σlow and σy = σlow and substituting in the optimal
2-switch sampling allocation of q2 = σlow

σlow+σhigh
the inequality simplifies as follows:

−T2(µx − µy)√
T2σ2

L

< − 2(1− q1)q1T1(µx − µy)√
(1− q1)2q1T1σ2

L + (1− q1)q21T1σ
2
L√

T2
σlow

>
2(1− q1)q1

√
T1√

(1− q1)2q1σ2
low + (1− q1)q21σ

2
low

T2 > 4T1(1− q1)q1

Since 4(1 − q1)q1 lies in the interval [0, 1] it can be seen that with no switching cost
(T2 = T1) the inequality is satisfied and an additional switch is always benefical and as
the switching cost grows the inequality will eventually fail to be satisfied and a further
switch becomes detrimental to the error rate.

Finally, considering the case with σx = σhigh and σy = σlow and substituting in the
optimal 2-switch sampling allocation of q2 =

σhigh

σhigh+σlow
the inequality simplifies as

follows:

−
2(µx − µy)

√
T2σ2

highσ
2
low

(σhigh+σlow)2

σhighσlow
< − 2(1− q1)q1T1(µx − µy)√

(1− q1)2q1T1σ2
high + (1− q1)q21T1σ

2
low√

T2
(σhigh + σlow)2

>

√
(1− q1)q1T1

(1− q1)σ2
high + q1σ2

low

(4.7)

T2 >

(
q1σ

2
high − q21σ2

high + 2q1σhighσlow − 2q21σhighσlow

)
T1

σ2
high − q1σ2

H + q1σ2
low

In summary, if the second sampled alternative is the more noisy one, i.e. σy = σhigh,
the accuracy is maximized by a single switch, but if σy = σlow, an additional switch
may improve accuracy under certain conditions.
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5 DV Decision Maker - Error Rates and Optimal
Sampling Allocation

In the main text it was shown how the log-likelihood ratio used in the ideal observer
model (derived in Section 1) could be simplified to yield a decision variable (DV).
Importantly, this simplified model was shown to have equivalent performance to the
ideal observer model when particular sampling strategies were utilised.

In this section the expected error rate for the DV decision maker and the relationship
between this error rate and the sampling strategy used is considered. To begin, in
section 5.1 the expected error rate for the DV decision maker is derived. Next, in
section 5.2 this error rate is related to that of the ideal observer. Finally, in section 5.3
the effect deviations from the optimal sampling strategy has on the performance of the
decision maker is considered.

5.1 Expected Error Rate

In this section an expression is derived giving the expected error rate of the DV decision
maker in terms of the decision problem parameters and the free parameter q which
dictates the sampling strategy. As outlined in the main text, the DV decision maker
utilises the decision function δDV(xm,yn) to determine which of the two available
hypotheses Hx or Hy to accept:

δDV(xm,yn) =

{
Hx if DV(xm,yn) > 0
Hy if DV(xm,yn) ≤ 0

}
Throughout this section DV(xm,yn) and DV shall be used interchangeably to refer to
the value of the decision variable having made the observations xm and yn; which can
be calculated as follows:

DV(xm,yn) =
∑

xi − w
∑

yj

= qT x̄− w(1− q)T ȳ (5.1)

Where, x̄ and x̄ are the mean values of the observations made from sources X and
Y respectively and w = q̃

1−q̃ , with q̃ representing the assumed or planned sampling
strategy.

Thus, as with the optimal observer error rate, at a given interrogation time T , the
probability of making an error is given by the integral over the distribution of DV
between −∞ and 0 if Hx is the correct hypothesis and between 0 and ∞ if Hy is the
correct hypothesis. This is shown below in Equation 5.2, where ERHx and ERHy are
used as short hand to denote the error rates under each of the hypotheses for a given
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parameterisation of the problem:

ERDV|Hx = P (DV ≤ 0 | Hx) ERDV|Hy = P (DV > 0 | Hy) (5.2)

Again, as with the optimal observer, the decision variable, like the LLR, is given by a
linear combination of the observations from the normally distributed random variables
X and Y . Thus the decision variable is itself a normally distributed random variable.
Denoting the expected value of DV by E[DV] and the variance by Var(DV), they can
each be calculated from the decision problem parameters as follows:

E[DV] = qTµx − w(1− q)Tµy
Var(DV) = qTσ2

x + w2(1− q)Tσ2
y

With the expressions for the mean and variance of the DV at the decision time T
formulated, the DV error rates (Equation 5.2) can be stated in terms of the standard
normal CDF, as shown below:

ERHx = P (DV ≤ 0 | Hx) ERHy = P (DV > 0 | Hy)

= Φ

(
−E(DV|Hx)√

Var(DV)

)
= 1− Φ

(
−E(DV|Hy)√

Var(DV)

)
(5.3)

Where, the argument of the normal CDF function, −E(DV|Hi)√
Var(ZT )

, is shown below:

−E(DV)√
Var(DV)

= − qTµx − w(1− q)Tµy√
qTσ2

x + w2(1− q)Tσ2
y

(5.4)

In the next section this result and the equivalent result for the ideal observer (Equa-
tion 2.7) shall be compared to establish how the error rate of the DV decision maker
relates to that of the optimal ideal observer decision maker and to determine how the
DV decision maker should allocate their samples to minimise the expected error rate.

5.2 Relationship to Ideal Observer

In the previous section an expression was derived giving the expected error rate of the
DV decision maker in terms of the decision problem parameters and the free parameter
q which dictates the sampling strategy. In this section the DV error rate expression
along with the stages used to derive the DV decision maker from the ideal observer
decision maker are used to relate the performance of the decision makers and determine
the optimal sampling allocation the DV decision maker should utilise.

In the main text it was shown that when the DV decision maker implements the
planned sampling strategy of q̃ (q = q̃) the ideal observer and DV decision maker
behave identically. With the error rates of the ideal observer (Equation 2.6) and
DV decision maker (Equation 5.3) both given by the standard normal CDF (Φ (.))
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this relationship can be seen by comparing the values of −E(LLR)√
Var(LLR)

and −E(DV)√
Var(DV)

.

Inspection of these functions, which are shown below and examples of which are plotted
in Figure 5.1, reveals that as expected the error rates intersect when the DV decision
maker implements the planned sampling strategy of q̃

−E(DV)√
Var(DV)

= −
qTµx − q̃

1−q̃ (1− q)Tµy√
qTσ2

x +
(

q̃
1−q̃

)2
(1− q)Tσ2

y

= − q(1− q̃)Tµx − q̃(1− q)Tµy√
q(1− q̃)2Tσ2

x + q̃2(1− q)Tσ2
y

−E(LLR)√
Var(LLR)

= − q(1− q)Tµx − q(1− q)Tµy)√
q(1− q)2Tσ2

x + q2(1− q)Tσ2
y

As discussed previously, the log-likelihood ratio used by the ideal observer is the optimal
decision strategy for two-alternative decisions made with a specified decision threshold
(η) on the basis of a fixed number of observations[8]. Given the optimality of the ideal
observer and the relationship between the error rates of the ideal observer and DV
decision maker identified above it can be seen that DV decision maker’s performance
is maximised when implementing the planned sampling strategy q̃. Furthermore, since
q∗ = σx

σx+σy
yields the optimal performance for the ideal observer, planning and imple-

menting a sampling strategy of q = q̃ = q∗, will also yield the optimal error rates for
the DV decision maker as well.

5.3 Deviation from Planned Strategy

In the previous section it was shown that the DV decision maker and ideal observer
are equivalent whenever the planned sampling strategy, q̃, coincides with the actual
sampling strategy q. Furthermore, since a sampling strategy of q∗ = σx

σx+σy
was shown

to minimise the error rate for the ideal observer and since the ideal observer provides the
optimal solution to the decision problem [8] this strategy also minimises the error rate
for the DV decision maker when q̃ = q = σx

σx+σy
. In this section the performance of the

DV decision maker when deviating from the planned sampling strategy is considered.

As shown in Section 5.1 the DV decision maker’s error rate, like the ideal observer’s,
is a function of standard normals cumulative probability distribution (Φ (.)):

ERHx = P (DV ≤ 0 | Hx) ERHy = P (DV > 0 | Hy)

= Φ

(
−E(DV|Hx)√

Var(DV)

)
= 1− Φ

(
−E(DV|Hy)√

Var(DV)

)



19

Σx

Σx + Σy

EHx@DVD
Var@DVD

EHx@LLRD
Var@LLRD

0.2 0.4 0.6 0.8 1.0

-4

-2

2

(a) Hx, σx = σHigh, σy = σLow

Σx

Σx + Σy

EHx@DVD
Var@DVD

EHx@LLRD
Var@LLRD

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

(b) Hx, σx = σy = σHigh
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(d) Hy , σx = σHigh, σy = σLow
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(e) Hy ,σx = σy = σHigh
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(f) Hy ,σx = σLow, σy = σHigh

Figure 5.1: Plots comparing the argument of the DV (blue lines) and LLR (red lines)
error functions across the interval of valid sampling strategies [0, 1] under a number of
parameterisations of the decision problem. In each plot the optimal sampling strategy
q = σx

σx+σy
is marked on both the argument and derivative plots. Plots have been

generated with µHigh = 3.0, µLow = 1.0, σHigh = 2.0, σLow = 1.0 and T = 10. From left
to right the variances of the alternatives vary in each of the plots with Figures 1(a) and
1(d) having σx = σHigh and σy = σLow, Figures 1(b) and 1(e) having σx = σy = σHigh

and in Figures 1(c) and 1(f) σx = σLow and σy = σHigh. From top to bottom the
means of the alternatives vary with Figures 1(a), 1(b) and 1(c) having µx = µHigh

and µy = µLow and Figures 1(d), 1(e) and 1(f) having µx = µLow and µy = µHigh.
Comparing the DV and LLR plots it can be seen that, as expected, the two values are
coincident at q = σx

σx+σy
. Furthermore, from inspection of the DV argument plot (blue

line), it can be seen that as the plot is a straight line, the derivative has a constant
value across [0, 1].

As Φ (.) is a monotonically increasing function, the error rate of the DV decision maker
increases with the argument of Φ (.) under hypothesisHx and decreases as the argument
increases under hypothesis Hy. From Figure 5.1 it can be seen that for the examples

six plotted the value of −E(DV|Hx)√
Var(DV)

decreases as the the q value is increased. Thus it

appears the effect of deviating from the optimal sampling strategy q∗ = σx
σx+σy

is to

to bias the decision maker towards selecting the source from which more samples were
drawn than stipulated by q∗.

To determine if this relationship holds for all decision problems, and not just the specific
cases in Figure 5.1, further investigation is required. To this end we take the derivative
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of d
dq
−E(DV)√
Var(DV)

with respect to the sampling strategy q which yields the following result:

d

dq

−E(DV)√
Var(DV)

=
(qTµX − (1− q)TwµY )(Tσ2

x − Tw2σ2
y)

2(qTσ2
x + w2(1− q)Tσ2

y)
3
2

− (TµX + TwµY )√
(qTσ2

x + w2(1− q)Tσ2
y)

(5.5)

Now setting d
dq
−E(DV)√
Var(DV)

< 0 we can begin to prove the relationship identified above.

0 >
d

dq

−E(DV)√
Var(DV)

(TµX + TwµY )√
(qTσ2

x + w2(1− q)Tσ2
y)
>

(qTµX − (1− q)TwµY )(Tσ2
x − Tw2σ2

y)

2(qTσ2
x + w2(1− q)Tσ2

y)
3
2

Multiplying out the denominators and simplifying yields:

(qTµX − (1− q)TwµY )(Tσ2
x − Tw2σ2

y) = 2(TµX + TwµY )(qTσ2
x + w2(1− q)Tσ2

y)

(qµX − (1− q)wµY )(σ2
x − w2σ2

y) = 2(µX + wµY )(qσ2
x + w2(1− q)σ2

y)

Rearranging, the sampling strategy q can be written in terms of the remaining param-
eters:

wµyσ
2
x + 2w2µxσ

2
y + w3µyσ

2
y

(µx + wµy)
> q

(
w2σ2

y − σ2
x

)
Simplifying further there are three distinct cases that must be handled depending on
the value of w2σ2

y − σ2
x. First, when w2σ2

y = σ2
x the RHS of the above reduces to 0

yielding:

wµyσ
2
x + 2w2µxσ

2
y + w3µyσ

2
y

(µx + wµy)
> 0

Next, when w2σ2
y > σ2

x division by w2σ2
y − σ2

x yields the following result:

wµyσ
2
x + 2w2µxσ

2
y + w3µyσ

2
y

(µx + wµy)
(
w2σ2

y − σ2
x

) > 1 > q

Finally, when w2σ2
y < σ2

x division by w2σ2
y − σ2

x yields the following result:

q > −1 >
wµyσ

2
x + 2w2µxσ

2
y + w3µyσ

2
y

(µx + wµy)
(
w2σ2

y − σ2
x

)
With w, µx, µy, σ

2
x and σ2

y all strictly positive, it can be seen that all three of these
inequalities are necessarily satisfied. Since all of these cases completely encompass the
interval q ∈ [0, 1], all valid sampling strategies yield a negative derivative, regardless of
hypothesis. Thus the effect of deviating from the optimal sampling strategy q∗ = σx

σx+σy

is to bias the decision maker towards selecting the source from which more samples
were drawn than stipulated by q∗.
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