Supporting Information

(Biphenyl-4-yl)methylammonium Chlorides: Potent Anticonvulsants That Modulate Na⁺ Currents

Hyosung Lee,^{1,a} Ki Duk Park,^{1,b} Xiao-Fang Yang,² Erik T. Dustrude,⁴ Sarah M. Wilson⁴,

Rajesh Khanna,^{2,3,4} and Harold Kohn^{1,5,*}

From the ¹Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, and ⁵Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, and Departments of ²Pharmacology & Toxicology and ³Biochemistry & Molecular Biology, and ⁴Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA

*CORRESPONDING AUTHORS FOOTNOTE

From the Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, and Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, E-mail: https://doi.org/10.2004/nate-10.2004

Author Current Address

^a Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea

^b Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul, Korea									

Supplementary Table 1. Receptor Binding Profiles for Compounds 2-11.^a

Cmpd No.b		2	3	4	5	6	7	8	9	10	11
Serotonergic	5-HT 1A	50.0	9.2	8.2	-0.1	24.7	28.2	50.0	50.0	18.4	3.6
	5-HT 1B	-8.2	7.9	-16.5	-15.2	-9.1	35.0	6.2	10.3	-11.4	-16.4
	5-HT 1D	16.7	3.3	-0.9	-4.3	9.9	38.5	20.1	50.0	ND	-4.4
	5-HT 1E	7.8	ND	-4.3	-4.8	-14.1	ND	ND	-6.0	-7.0	-6.0
	5-HT 2A	50.9	59.2	76.6	53.0	56.2	83.8	51.9	51.5	80.6	14.9
	5-HT 2B	42.8	34.4	70.6	16.8	33.1	49.8	67.8	31.9	40.3	-7.8
	5-HT 2C	6.4	28.0	39.9	80.8	28.7	16.3	6.1	0.6	18.8	-0.8
	5-HT 3	-1.3	-1.4	0.0	10.7	7.1	15.7	25.2	-12.6	7.5	-11.4
	5-HT 5A	32.2	66.2	62.3	22.8	77.4	64.8	48.6	51.9	73.1	70.9
	5-HT 6	12.1	9.2	5.0	34.4	25.6	44.6	35.3	42.8	31.3	25.4
	5-HT 7	80.7	24.2	53.8	69.9	90.8	39.5	88.2	66.8	58.3	81.5
Adrenergic	Alpha 1A	-8.1	1.3	-11.4	-16.5	-10.7	4.9	-7.7	-5.3	-8.8	-0.8
	Alpha 1B	-14.7	-19.4	-6.9	-17.8	-11.8	-13.1	-11.8	-16.2	-3.6	-1.4
	Alpha 1D	-19.9	-14.4	-1.1	-11.4	-14.3	18.1	-12.4	-9.5	-1.5	4.0
	Alpha 2A	53.4	57.2	56.9	56.8	ND	70.7	75.9	75.1	68.8	81.6
	Alpha 2B	50.6	59.8	46.0	22.4	-0.1	59.8	33.2	32.0	52.5	18.5
Ā	Alpha 2C	47.8	53.1	53.3	41.8	48.0	51.4	23.5	0.2	65.5	88.4
	Beta 2	13.0	21.1	5.0	9.5	1.8	58.9	7.1	13.8	40.1	-7.0
	Beta 3	-9.1	1.5	17.7	2.2	9.1	16.7	-17.5	0.7	16.0	19.0
	Rat Brain Site	-16.5	0.3	1.9	0.2	-4.6	-0.1	5.7	-0.3	-1.9	-1.9
BZP	PBR	2.0	17.8	13.5	-3.2	1.8	21.6	10.4	32.1	11.5	-1.2
	GABA A	-18.7	-18.6	-14.2	-10.8	-15.9	-19.1	-17.6	-10.4	-2.8	ND
Dopaminergic	D1	-9.3	-4.4	3.7	0.1	-6.8	5.6	9.9	4.5	5.8	3.4
	D2	-9.2	7.9	19.7	6.1	12.6	67.9	-7.5	-15.0	16.1	-6.5
	D3	40.2	33.9	13.0	19.4	25.2	89.8	62.5	20.8	58.2	55.9
	D4	49.1	38.1	36.1	67.3	12.3	96.3	50.0	5.4	51.9	-7.4
	D5	-13.1	-10.8	-4.2	-4.1	-0.8	-7.6	0.9	9.6	0.3	3.8
Opioid	DOR	1.1	7.3	11.0	17.0	24.0	19.0	22.0	7.7	29.0	20.0
	KOR	39.6	52.0	64.3	-0.2	8.0	51.5	42.4	45.0	3.5	44.2
	MOR	-8.7	9.0	14.4	-4.1	30.0	23.2	47.7	-5.6	31.0	51.6
Sigma	Sigma 1	92.4	ND	79.8	85.1	85.4	87.9	95.6	95.7	92.7	31.2
	Sigma 2	41.9	ND	74.8	81.5	63.0	87.5	90.3	88.1	85.2	8.6
Histamine	H1	-2.8	11.8	13.7	-2.2	10.6	74.6	10.1	4.0	19.2	-13.0
	H2	-5.7	-16.3	-13.9	ND	ND	8.8	28.5	-3.9	-16.2	ND
	H3	29.1	25.6	33.2	-2.7	-5.0	15.9	-12.8	-6.2	-5.1	3.8
Muscarinergic	M1	-1.2	50.0	50.0	27.4	52.6	0.8	-8.4	-14.0	12.1	63.6
	M2	-7.2	-2.7	4.6	17.3	25.8	-6.8	-9.5	-8.3	3.2	20.6
	M3	-16.5	2.9	-1.6	2.5	-4.3	-12.8	-15.9	-20.3	4.1	-21.5
	M4	-0.1	-6.2	-7.1	-0.8	-5.8	-2.6	-7.2	-1.0	-6.3	-5.2
	M5	-1.1	0.8	5.8	2.8	7.4	1.7	-3.6	ND	12.4	3.9
Transporter	DAT	63.4	74.0	40.0	66.3	51.9	53.9	75.1	58.4	73.2	8.2
	NET	87.3	86.6	74.4	76.5	83.5	72.5	85.0	84.9	96.8	17.5
	SERT	79.0	99.2	ND	96.1	95.0	90.1	101.7	80.3	102.8	-0.4
		-		_							

 $^{^{}a}$ Data represent mean % inhibition (N = 4 determinations) for compound tested at receptor subtypes. Significant inhibition is considered > 50%. In cases where negative inhibition (-) is seen, this represents a stimulation of binding. Occasionally, compounds at high concentrations will non-specifically increase binding. The default concentration for primary binding experiments is 10 μ M. b Compound number. ND; not determined.