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Figure S1. Detailed illustration of regulatory pathways contributing to either pheromone arrest or cell cycle entry.
As in Figure 8, regulatory effects that inhibit or promote the G1/S transition are indicated in red or green, respectively. In
addition, inhibitory effects of CIn-Cdk activity on the pheromone pathway are indicated in blue. The question marks indicate
that, in addition to regulating Far1 and Tec1, the pheromone-activated MAPK may cause post-translational effects that
interfere with the synthesis and/or stability of cyclin proteins (see Discussion).
(A) The pheromone pathway and the cell cycle are mutually antagonistic. In wild-type cells, the ability of pheromone to cause
G1 arrest is likely dependent on whether the pheromone signal is received prior to the accumulation of CIn-Cdk activity.

(B) In far1A CLNZ2 cells, uninhibited CIn-Cdk can more potently drive events that promote the G1/S transition (green arrows)
and that inhibit pheromone signaling (blue inhibitory arrow), resulting in resistance to pheromone arrest.

(C) In far1A cIn2A cells, the loss of CIn2-Cdk activity can allow other pheromone-induced effects to effectively antagonize the
G1/S transition, in a manner dependent on Tec1 destruction and the activities of Whi5/Stb1 and Sic1.




