Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors

Brian C. Manor and Thomas B. Rauchfuss*

School of Chemical Sciences, University of Illinois

Table of Contents

p. S3-5 Additional synthetic procedures

p. S6 Table S1. IR data for new and related complexes.

p. S7 Figure S1. IR spectrum of cis-CO/trans-CN and cis-CO/trans-CN isomers of 2 in CH₂Cl₂ solution.

p. S8 Figure S2. ³¹P NMR spectrum of the cis-CO/trans-CN and cis-CO/trans-CN isomers of **2** in a CD_2Cl_2 solution.

p. S9 Figure S3. IR spectrum of the cis-CO/trans-CN isomer of $1(BAr^F₃)₂$ in a CH₂Cl₂ solution.

p. S10 Figure S4. IR spectrum of the trans-CO/cis-CN isomer of $1(BAr^F₃)₂$ in a CH₂Cl₂ solution.

p. S11 Figure S5. IR spectrum of the cis-CO/cis-CN isomer of $1(BAr^F₃)₂$ in a CH₂Cl₂ solution.

p. S12 Figure S6. ¹⁹F NMR spectrum of the cis-CO/trans-CN isomer of **1**(BAr^F₃)₂ in a CD₂Cl₂ solution.

p. S13 Figure S7.¹⁹F NMR spectrum of the trans-CO/cis-CN isomer of **1**(BAr^F₃)₂ in a CD₂Cl₂ solution.

p. S14 Figure S8.¹⁹F NMR spectrum of the cis-CO/cis-CN isomer of **1**(BAr^F3)₂ in a CD₂Cl₂ solution.

p. S15 Figure S9. ³¹P NMR spectrum of the cis-CO/trans-CN isomer of **1**(BAr^F₃)₂ in a CD₂Cl₂ solution.

p. S16 Figure S10. ³¹P NMR spectrum of the trans-CO/cis-CN isomer of **1**(BAr^F₃)₂ in a CD₂Cl₂ solution.

p. S17 Figure S11. ³¹P NMR spectrum of the cis-CO/cis-CN isomer of **1**(BAr^F3)₂ in a CD₂Cl₂ solution.

p. S18. Figure S12. IR spectrum of cis-CO/trans-CN and cis-CO/trans-CN isomers of 2(BArF₃)₂ in CH_2Cl_2 solution.

p. S19 Figure S13. IR spectrum of the trans-CO/cis-CN isomer of 2(BArF₃)₂ in CH₂Cl₂ solution.

p. S20 Figure S14. ³¹P NMR spectrum of cis-CO/trans-CN and cis-CO/trans-CN isomers of **2**(BAF_3)₂ in CD₂Cl₂ solution.

p. S21 Figure S15. ³¹P NMR spectrum of the trans-CO/cis-CN isomer of $2(BArF_3)_2$ in CH₂Cl₂ solution.

p. S22 Figure S16. IR spectrum of $Et_4N[H3(BArF_{3})_2]$ in CH_2Cl_2 solution.

p. S23 Figure S17. ¹H NMR spectrum of $Et_4N[H3(BAr^F_{3})_2]$ in CD_2Cl_2 solution.

p. S24 Figure S18. ¹⁹F NMR spectrum of $Et_4N[H3(BAr^F_{3})_2]$ in CD₂Cl₂ solution.

p. S25 Figure S19. ³¹P NMR spectrum of $Et_4N[H3(BAr^F_{3})_2]$ in CD₂Cl₂ solution.

- p. S26 Figure S20. IR spectrum of $Et_4N[HA(BAr^F_{3})_2]$ in CH_2Cl_2 solution.
- p. S27 Figure S21. ¹H NMR spectrum of $Et_4N[HA(BAr^F_{3})_2]$ in CD_2Cl_2 solution.
- p. S28 Figure S22. ¹⁹F NMR spectrum of $Et_4N[HA(BArF_{3})_2]$ in CD_2Cl_2 solution.
- p. S29 Figure S23. 31 P NMR spectrum of Et₄N[H4(BAr^F₃)₂] in CD₂Cl₂ solution.
- p. S30 Figure S24. IR spectrum of $Et_4N[Cl3(BAr^F_{3})_2]$ in CH_2Cl_2 solution.
- p. S31 Figure S25. ¹⁹F NMR spectrum of $Et_4N[Cl3(BAr^F_{3})_2]$ in CD₂Cl₂ solution.
- p. S32 Figure S26. ³¹P NMR spectrum of $Et_4N[Cl3(BAr^F_{3})_2]$ in CD₂Cl₂ solution.
- p. S33 Figure S27. ¹H NMR spectrum of $HMMe₃BAr^{F24}$ in $CD₂Cl₂$ solution.

p. S34 Figure S28. Cyclic voltammogram of the reduction of Et₄N[H3(BAr^F₃)₂] at varying scan rates in $CH₂Cl₂$.

p. S35 Figure S29. Cyclic voltammogram of the oxidation of Et₄N[H**3**(BAr^F₃)₂] at varying scan rates in $CH₂Cl₂$.

p. S36 Figure S30. Cyclic voltammogram of the oxidation of Et₄N[H**4**(BAr^F₃)₂] at varying scan rates in $CH₂Cl₂$.

- p. S37 Determination of the equilibrium constant for dihydrogen bonding
- p. S37 Table S2. ¹H NMR signals for the titration of Et₄N[H**3**(BAr^F3)₂] with HNMe₃BAr^{F24}
- p. S37 Table S3. H_2 Production from Et $_4$ N[H**3**(BAr $^{\text{F}}{}_{3})_2$] and PhNH $_3$ BAr $^{\text{F24}}$ ·2Et $_2$ O
- p. S38 Electrocatalytic Oxidation of H_2
- p. S38 Figure S31. Electrocatalytic oxidation of H₂ by Et₄N[H3(BAr^F₃)₂] in the presence of DBU.
- p. S39 References

Additional Synthetic Procedures

Isomerization of 1(BAr^F₃)₂. A solution of the cis-CO/trans-CN isomer of 1(BAr^F₃)₂ (10 mg, 0.006 mmol) in CD_2Cl_2 (1 mL) was loaded into an NMR tube fitted with a J Young valve and irradiated by a 365 nm LED array for 3h. ^{19}F and ^{31}P NMR measurements showed conversion of the initial isomer to a 3:1 ratio of the trans-CO/cis-CN and cis-CO/cis-CN isomers. Upon sitting in the absence of light for 5 days, the mixture shifted to a 1:25 ratio of the trans-CO/cis-CN and cis-CO/trans-CN isomers.

trans-CO/cis-CN: IR(CH₂Cl₂): v_{CN} = 2215, 2201 cm^{□1}, v_{CO} = 2087(w), 2030 cm^{□1}. ³¹P NMR (CD_2Cl_2) : δ 58.7 (s). ¹⁹F NMR (CD_2Cl_2) : □135.2 (d, o-F), □160.6 (t, p-F), □166.5 (t, m-F). $\rm{cis}\text{-}CO/c$ is-CN: IR(CH₂Cl₂): ν_{CN} = 2214, 2202 cm $^{\Box 1}$, ν_{CO} = 2070, 2020 cm $^{\Box 1}$. ³¹P NMR (CD₂Cl₂): δ 58.9, 58.5 (AB quartet, J_{PP} = 37 Hz). ¹⁹F NMR (CD₂Cl₂): \Box 135.0 (d, o-F), \Box 135.1 (d, o-F), \Box 160.0 (t, p-F), ‒160.7 (t, p-F), ‒166.0 (t, m-F), ‒166.5 (t, m-F).

Isomerization of 2(BAr^F₃)₂. A solution of the cis-CO/trans-CN isomer of 2(BAr^F₃)₂ (10 mg, 0.006 mmol) in CD_2Cl_2 (1 mL) was loaded into an NMR tube fitted with a J Young valve and irradiated by a 365 nm LED array for 2 h. ^{19}F and ^{31}P NMR showed conversion of the initial isomer to the trans-CO/cis-CN isomer. No further isomerization was observed upon standing in the absence of light. $IR(CH_2Cl_2)$: v_{CN} = 2214, 2200 cm^{□1}, v_{CO} = 2084(w), 2027 cm^{□1}. ³¹P NMR (CD_2Cl_2) : δ 75.1 (s). ¹⁹F NMR (CD₂Cl₂): \Box 135.0 (d, o-F), \Box 160.4 (t, p-F), \Box 166.2 (t, m-F).

Borohydride Route to Et4N[(CO)(CNBAr^F 3)2Fe(pdt)(H)Ni(dppe)], Et4N[H3(BAr^F $Et_4N[H3(BAr_{3})_2]$ (alternative to the H₂ route). A solution of $1(BAr^F_{3})_2$ (100 mg, 0.057 mmol) in 10 mL of CH₂Cl₂ was treated with 1.2 mL (1.2 equiv.) of a stock solution of $Me₃NO$ in $CH₂Cl₂$ (0.057 M) causing the solution to darken in color. The solution was quickly treated with a suspension of Et_4NBH_4 (8.3 mg, 0.057 mmol) in 10 mL CH_2Cl_2 and stirred for 30 minutes. The solvent was removed under reduced pressure and the resulting solid was extracted into 20 mL of $Et₂O$ and the mixture was passed through Celite. Once the solution was concentrated to approximately 3 mL, pentane (20 mL) was added, forming a brown solid which was isolated by filtration. The remaining workup is similar to that described with Me₃NO and H₂. Yield: 22 mg (21%). Crystals suitable for x-ray diffraction were grown by diffusion of pentane into a solution of Et4N[H**3**(BAr^F ³)2] in dichloromethane at 0°C.

Et4N[(CO)(CNBAr^F 3)2Fe(pdt)(H)Ni(dcpe)], Et4N[H4(BAr^F ³)2]. In a thick-walled glass pressure tube, a solution of $2(BAr^F_{3})_2$ (140 mg, 0.0789 mmol) in CH₂Cl₂ (10 mL) was treated with Me₃NO (7.1 mg, 0.0946 mmol) in 2 mL of CH_2Cl_2 and immediately frozen by inserting the tube into liquid nitrogen. The headspace was evacuated and refilled with 40 psig of H_2 , and the solution was thawed. After stirring this mixture for 2 h, solvent was removed and the residue was extracted into $Et₂O$. The extract was filtered through Celite and the solvent removed under vacuum. ¹⁹F NMR analysis showed ~50% of signals product. The crude sample was dissolved in 10 mL of CH_2Cl_2 and treated with excess Et_4NCl (131 mg, 0.789 mmol). The solvent was removed under vacuum, and the product was extracted into 10 mL $Et₂O$. The mixture was filtered through Celite, and the filtrate was dried under vacuum. The solid was dissolved in a minimal amount of THF and loaded onto a column of neutral alumina (Brockmann Level IV) eluting THF. The first red band was discarded, and the remaining brown band was eluted with CH_2Cl_2 . The solution was concentrated to 5 mL, layered with 20 mL of pentane, and cooled to $\Box 30$ °C precipitating an oil. Upon storing under vacuum, the oil converted to a solid. The solid recrystallized from 5 mL of CH₂Cl₂, layered with 20 mL of pentane and cooled in a \Box 30 °C, yielding red crystals (49 mg, 33%).

Synthesis of HNMe3BArF24 . Me3N•HCl (54 mg, 0.56 mmol) and NaBArF24 (500 mg, 0.56 mmol) were dissolved in CH_2Cl_2 (40 mL) and stirred for 10 min. The solvent was removed under vacuum forming an off-white solid. The product was extracted into $Et₂O$ (40 mL), passed through Celite, and the solvent was removed under vacuum. The product was crystallized from CH_2Cl_2 and hexanes at 0°C. Yield 0.44 g (84%). ¹H NMR (CD₂Cl₂): 7.72 (s, 8H); 7.57 (s, 4H); 6.38 (t, 2H, $HN(CH_3)_3$, J_{NH} = 55 Hz); 3.05 (d, 9H, HN(CH₃)₃).

Synthesis of Pyrrolidinium BArF24 (Pyr•HBArF24). Pyrrolidine (64 mg, 9.0 mmol) was dissolved in CH₂Cl₂ (10 mL) and treated with HBF₄•Et₂O (1.3 mL, 9.0 mmol) and stirred for 30 minutes. The solvent was removed under vacuum producing a white powder. The solid was washed with pentane (20 mL) and $Et₂O$ (20 mL) and dried under vacuum. Yield 1.32 g (92%). [Pyrrolidinium]BF₄ (36 mg, 0.226 mmol) and NaBA r^{F24} (200 mg, 0.226 mmol) were combined and dissolved in CH_2Cl_2 (40 mL) and let stir for 1 h. The solvent was removed under vacuum, producing an oil. An ether extract of this oil (10 mL) was passed through Celite, and the solvent was removed under vacuum. The resulting oil was triturated with pentane producing an offwhite solid. The solid was dissolved in CH_2Cl_2 (5 mL), layered with pentane (20 mL) and cooled to 0 °C yielding white crystals (0.19 g, 90%). ¹H NMR (CD₂Cl₂): 7.72 (s, 8H); 7.57 (s, 4H); 6.14 (t, 2H, H_2N , J_{NH} = 53 Hz); 3.58 (s, 4H, N(C H_2)₂(CH₂)₂); 2.20 (s, 4H, N(CH₂)₂(CH₂)₂.

Synthesis of [PhNH3]BArF24·2Et2O. [PhNH3]BF4 (41 mg, 0.226 mmol) was dissolved in MeCN (5 mL) and this solution was treated with a solution of NaBA r^{F24} (200 mg, 0.226 mmol) in MeCN (5 mL). The mixture was stirred for 10 min, followed by removal of the solvent. The product was extracted into $Et₂O$ (10 mL) and passed through Celite, and the filtrated was dried under vacuum. The resulting off-white solid was dissolved in CH_2Cl_2 , layered with pentane, and cooled to \Box 30 °C, yielding white crystals (210 mg, 83%). Two molecules of Et₂O were found by ¹H NMR and were not able to be removed even after drying the sample under vacuum for 24 h. ¹H NMR (CD₂Cl₂): 8.69 (br, 3H, *H*₃NPh); 7.72 (s, 8H); 7.63-7.61 (m, 3H, H₃N*Ph*); 7.56 (s, 4H); 7.35-7.33 (m, 2H, H3N*Ph*); 3.57 (m, 8H, (CH3C*H2*)2O); 1.17 (m, 12H, (C*H3*CH2)2O).

Titration of Et₄N[H3(BAr^F₃)₂] with HNMe₃BAr^{F24}. A sample of Et₄N[H3(BAr^F₃)₂] (2.6 mg, 0.0014mmol) was dissolved in 1 mL of CD_2Cl_2 . A standard solution of $HMMe_3BAr^{F24}$ was prepared by dissolving 130 mg of $HMMe₃BAr^{F24}$ (0.14 mmol) in 1mL of $CD₂Cl₂$ (0.14 M). A 1H NMR spectrum was collected before addition of $HMMe₃BAr^{F24}$ and after each addition. The sample was kept cold between acquisitions to prevent decomposition and warmed to room temperature immediately prior to recording the ¹H NMR spectrum.

Titration of Et4N[H4(BAr^F 3)2] with Pyr•HBArF24 . A sample of Et4N[H**4**(BAr^F ³)2] (2.5 mg, 0.0013 mmol) was placed in a J Young NMR tube and dissolved in 0.9 mL of CD_2Cl_2 . A standard

solution of Pyr•HBA r^{F24} was prepared by dissolving 62 mg of Pyr•HBA r^{F24} (0.067 mmol) in 1 mL of CD₂Cl₂ (0.067 M). A ¹H NMR spectrum was collected before addition of Pyr•HBAr^{F24} and after each addition. The sample was kept cold between acquisitions to prevent decomposition and warmed to room temperature immediately prior to recording the ${}^{1}H$ NMR spectrum.

Production of H2 by protonation of Et4N[H3(BAr^F ³)2] with PhNH3BArF24·2Et2O. Three vials were loaded with a known amount of $Et_4N[H3(BAr^F_{3})_2]$ (~3 mg) and 0.5 of CH_2Cl_2 and sealed with a rubber septum. A stock solution of acid was prepared from $PhNH_3Br^{F24}·2Et₂O$ (60 mg, 0.0054 mmol) in 1.75 mL of CH_2Cl_2 . An aliquot of 0.5 mL of stock solution of acid was injected through the septum, resulting in a color change of the solution from brown to orange. An internal standard of 100 μ L of CH₄ was injected through the septum into the headspace of the vial. Each vial was allowed to stir for at least 30 minutes before the headspace was analyzed by gas chromatography.

Table S1. IR and ³¹P NMR Aignals for Dicarbonyl Complexes **1** and **2** and Their bis-BAr^F₃ Adducts and Isomers Thereof $(CH_2Cl_2$ solution).

Figure S1. IR spectrum of cis-CO/trans-CN(■) and cis-CO/trans-CN(●) isomers of 2 in CH₂Cl₂ solution. The second expected v_{CN} for the cis-CO/cis-CN isomer is obscured.

Figure S2. ³¹P NMR spectrum of the cis-CO/trans-CN and cis-CO/trans-CN isomers of 2 in a CD_2Cl_2 solution.

Figure S3. IR spectrum of the cis-CO/trans-CN isomer of $1(BAr^F₃)₂$ in a CH₂Cl₂ solution.

Figure S4. IR spectrum of $1(BAr^F_{3})_2$ in CH₂Cl₂ solution (trans-CO/cis-CN isomer). An impurity of the cis-CO/cis-CN isomer indicated by the $v_{\rm CO}$ band at 2070 cm^{$\scriptstyle\rm O1$}.

Figure S5. IR spectrum of $1(BAr^F₃)₂$ in $CH₂Cl₂$ solution (cis-CO/cis-CN isomer).

Figure S6. ¹⁹F NMR spectrum of the cis-CO/trans-CN isomer of $1(BAr^F₃)₂$ in a CD₂Cl₂ solution.

Figure S7. ¹⁹F NMR spectrum of **1**(BAr^F₃)₂ showing the presence of the cis-CO/trans-CN isomer. Signals for cis-CO/cis-CN isomer of **1**(BAr^F₃)₂ also observed (●).

isomer.

Figure S9. ³¹P NMR spectrum of cis-CO/trans-CN isomer of $1(BAr^F₃)₂$ in CD₂Cl₂ solution.

Figure S11. ³¹P NMR spectrum of cis-CO/cis-CN isomer of $1(BAr^F₃)₂$ in CD₂Cl₂ solution.

Figure S12. IR spectrum of cis-CO/trans-CN(■) and cis-CO/trans-CN(●) isomers of 2(BArF₃₎₂ in CH_2Cl_2 solution. A second v_{CN} band expected for the cis-CO/cis-CN isomer is not observed.

Figure S13. IR spectrum of trans-CO/cis-CN isomer of $2(BAr^F₃)₂$ in CH₂Cl₂ solution.

Figure S14. ³¹P NMR spectrum of trans-CO/cis-CN and cis-CO/cis-CN isomers of 2(BAr^F₃)₂ in CD_2Cl_2 solution.

Figure S16. IR spectrum of $Et_4N[H3(BAr^F_{3})_2]$ in CH_2Cl_2 solution.

Figure S18. ¹⁹F NMR spectrum of $Et_4N[H3(BArF_{3})_2]$ in CD_2Cl_2 solution.

Figure S19. ³¹P NMR spectrum of $Et_4N[H3(BAr^F3)₂]$ in CD₂Cl₂ solution.

Figure S20. IR spectrum of $Et_4N[HA(BAr^F3)₂]$ in CH_2Cl_2 solution.

Figure S23. ³¹P NMR spectrum of $Et_4N[HA(BAr^F3)₂]$ in CD₂Cl₂ solution.

Figure S24. IR spectrum of $Et_4N[Cl3(BAr^F_{3})_2]$ in CH_2Cl_2 solution.

Figure S25. ¹⁹F NMR spectrum of $Et_4N[Cl3(BAr^F_{3})_2]$ in CD_2Cl_2 solution.

Figure S26. ³¹P NMR spectrum of $Et_4N[Cl3(BAr^F_{3})_2]$ in CD_2Cl_2 solution.

Figure S27. ¹H NMR spectrum of $HMMe₃BAr^{F24}$ in $CD₂Cl₂$ solution.

Fig S28. Cyclic voltammogram of the reduction of $Et_4N[H3(BAr^F_{3})_2]$ at varying scan rates in $CH₂Cl₂$ (25°C).

Fig S29. Cyclic voltammogram of the oxidation of $Et_4N[H3(BAr^F_{3})_2]$ at varying scan rates in $CH₂Cl₂ (25[°]C).$

Fig S30. Cyclic voltammogram of the oxidation of $Et_4N[HA(BAr^F_{3})_2]$ at varying scan rates in $CH_2Cl_2 (25^{\circ}C)$.

Determination of the equilibrium constant for dihydrogen bonding:

A plot of δ_{obs} vs [HNMe₃⁺]_o was fit by the equation:⁵

$$
\delta_{obs} = \delta_{MH} + \frac{1}{2[MH]_o} (\delta_{MHHN} - \delta_{MH}) \left[([MH]_o + [HN]_o + 1 / K) - \sqrt{([MH]_o + [HN]_o + 1 / K)^2 - 4[MH]_o [HN]_o} \right]
$$

Where:

 δ_{obs} = Observed hydride chemical shift of in the presence of HNMe₃⁺

 $\delta_{\sf MH}$ = Hydride chemical shift of [H3(BAr^F₃₎₂][□] in the absence of HNMe₃⁺

 $\delta_{\sf MHHN}$ = Hydride chemical shift of [H**3**(BAr $^{\sf F}{}_{3})_2]^\square$ in the presence of excess HNMe $_3{}^*$

 $[\text{MH}]_0$: Initial concentration of $[\text{H3}(\text{BAr}^{\text{F}}_{3})_2]$ ^{\Box}

 $[HN]_0$: Initial concentration of $HMMe_3^+$

K = Equilibrium constant for formation of a dihydrogen bond between [H3(BAr $^{\text{F}}_{\text{3}}$)₂] $^{\text{}}$ and HNMe $_3^{\text{+}}$

Table S2. ¹H NMR signals for the titration of Et₄N[H3(BAr^F₃)₂] with HNMe₃BAr^{F24}

mol $HMMe3$ ⁺	$[HMMe3^+]$	δ (ppm)
		-7.09
$1.4E-6$	$1.4E-3$	-8.69
$2.8E-6$	$2.8E-3$	-9.03
$4.2E - 6$	$4.2E - 3$	-9.11
$5.6E-6$	$5.6E-3$	-9.16

The unknown values of δ_{MHHN} and K were determined by a nonlinear fit of experimental values using the Leven-Marquardt algorithm. The values were determined to be $\delta_{\text{MHHN}} = \Box 9.20 \pm 0.02$ ppm and $K = 9.0 \pm 1.0 \times 10^4$ L/mol.

<code>Table S3</code>. \textsf{H}_{2} Production from Et $_4$ N[H3(BAr $^{\textsf{F}}_{3})_2$] and PhNH $_3$ BAr $^{\textsf{F}24}\cdot$ 2Et $_2$ O

Run	Mass of $\mathsf{Et}_4\mathsf{N}[\mathsf{H3}(\mathsf{BAr^r}_3)_2]$ (mg)	μ mol Et ₄ N[H3(BAr ^F $r_{3})_{2}]$	umol of H_2 detected	mol% H_2
		.62	1.69	104%
	J.U	1.62	1.51	93%
	ົ ບ.ບ	.78	1.91	107%

Calculated mol% of $H_2 = 101 \pm 7\%$

Electrocatalytic Oxidation of H²

To a 1mM solution of Et₄N[H**3**(BAr^F₃)₂] in CH₂Cl₂ with 100 mM Bu₄NPF₆, aliquots of a standard DBU solution in CH_2Cl_2 (0.26 M, 0.193 mL of DBU in 5 mL of CH_2Cl_2) were added. H₂ gas was bubbled through the solution for 5 min immediately prior to scans.

Fig S31. Cyclic voltammogram of the oxidation of $Et_4N[H3(BAr^F₃)₂]$ in CH₂Cl₂ with increasing amounts of DBU under 1 atm of H_2 at a scan rate at 0.05 V/s (25°C). Decamethylferrocene (Fc*) used as an internal reference (\Box 0.55 V vs Fc^{0/+}). 6 equiv of DBU with 1 atm of H₂ in the absence of Et₄N[H3(BAr^F₃)₂] shown in dashed black line.

Turnover frequency (k_{obs}) of 0.98 s⁻¹ was determined by the method described by Bullock *et al.* (*Nat. Chem.* **2013**, *5*, 228-233).

$$
\frac{i_{cat}}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RTk_{obs}}{Fv}}
$$

 i_{cat} = maximum peak height in the presence of base

 i_p = peak height in the absence of base

 $R = gas constant$

T = temperature in Kelvin

F = Faraday's constant

v = scan rate (V/s)

References

 (1) Barton, B. E.; Whaley, C. M.; Rauchfuss, T. B.; Gray, D. L. *"Nickel-Iron-Dithiolato-Hydrides Relevant to the [NiFe]-Hydrogenase Active Site" J. Am. Chem. Soc.* **2009**, *131*, 6942.

 (2) Carroll, M. E.; Barton, B. E.; Gray, D. L.; Mack, A. E.; Rauchfuss, T. B. *"Active-Site Models for the Nickel-ìIron Hydrogenases: Effects of Ligands on Reactivity and Catalytic Properties" Inorg. Chem.* **2011**, *50*, 9554.

 (3) Kayal, A.; Rauchfuss, T. B. *"Protonation studies of the new iron carbonyl cyanide trans-Fe(CO)(3)(CN)(2) (2-): Implications with respect to hydrogenases" Inorganic Chemistry* **2003**, *42*, 5046.

 (4) Li, Z.; Ohki, Y.; Tatsumi, K. *"Dithiolato-Bridged Dinuclear Iron-Nickel Complexes [Fe(CO)2(CN)2(m-SCH2CH2CH2S)Ni(S2CNR2)]- Modeling the Active Site of [NiFe] Hydrogenase" J. Am. Chem. Soc.* **2005**, *127*, 8950.

 (5) Donghi, D.; Beringhelli, T.; D'Alfonso, G.; Mondini, M. *"NMR investigation of the dihydrogen-bonding and proton-transfer equilibria between the hydrido carbonyl anion HRe2(CO)(9) (-) and fluorinated alcohols" Chemistry-a European Journal* **2006**, *12*, 1016.